Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

1.

Structural similarity assessment for drug sensitivity prediction in cancer.

Shivakumar P, Krauthammer M.

BMC Bioinformatics. 2009 Sep 17;10 Suppl 9:S17. doi: 10.1186/1471-2105-10-S9-S17.

2.
3.

Differential gene expression as a potential classifier of 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole-sensitive and -insensitive cell lines.

Wallqvist A, Connelly J, Sausville EA, Covell DG, Monks A.

Mol Pharmacol. 2006 Mar;69(3):737-48. Epub 2005 Dec 6.

4.
5.

An integrated database of chemosensitivity to 55 anticancer drugs and gene expression profiles of 39 human cancer cell lines.

Dan S, Tsunoda T, Kitahara O, Yanagawa R, Zembutsu H, Katagiri T, Yamazaki K, Nakamura Y, Yamori T.

Cancer Res. 2002 Feb 15;62(4):1139-47.

6.

Drug sensitivity prediction by CpG island methylation profile in the NCI-60 cancer cell line panel.

Shen L, Kondo Y, Ahmed S, Boumber Y, Konishi K, Guo Y, Chen X, Vilaythong JN, Issa JP.

Cancer Res. 2007 Dec 1;67(23):11335-43.

8.
9.

Panel of human cancer cell lines provides valuable database for drug discovery and bioinformatics.

Yamori T.

Cancer Chemother Pharmacol. 2003 Jul;52 Suppl 1:S74-9. Epub 2003 Jun 18. Review.

PMID:
12819939
10.

Prediction of doxorubicin sensitivity in breast tumors based on gene expression profiles of drug-resistant cell lines correlates with patient survival.

Györffy B, Serra V, Jürchott K, Abdul-Ghani R, Garber M, Stein U, Petersen I, Lage H, Dietel M, Schäfer R.

Oncogene. 2005 Nov 17;24(51):7542-51.

PMID:
16044152
11.

Technology evaluation: SAGE, Genzyme molecular oncology.

Bartlett J.

Curr Opin Mol Ther. 2001 Feb;3(1):85-96. Review.

PMID:
11249736
12.
13.

CellMiner: a relational database and query tool for the NCI-60 cancer cell lines.

Shankavaram UT, Varma S, Kane D, Sunshine M, Chary KK, Reinhold WC, Pommier Y, Weinstein JN.

BMC Genomics. 2009 Jun 23;10:277. doi: 10.1186/1471-2164-10-277.

14.

Identification of non-cross-resistant platinum compounds with novel cytotoxicity profiles using the NCI anticancer drug screen and clustered image map visualizations.

Fojo T, Farrell N, Ortuzar W, Tanimura H, Weinstein J, Myers TG.

Crit Rev Oncol Hematol. 2005 Jan;53(1):25-34.

PMID:
15607933
16.

Cancer Drug Development: New Targets for Cancer Treatment.

Curt GA.

Oncologist. 1996;1(3):II-III.

PMID:
10387987
17.

Molecular determinants of the cytotoxicity of platinum compounds: the contribution of in silico research.

Vekris A, Meynard D, Haaz MC, Bayssas M, Bonnet J, Robert J.

Cancer Res. 2004 Jan 1;64(1):356-62.

18.

Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents.

O'Connor PM, Jackman J, Bae I, Myers TG, Fan S, Mutoh M, Scudiero DA, Monks A, Sausville EA, Weinstein JN, Friend S, Fornace AJ Jr, Kohn KW.

Cancer Res. 1997 Oct 1;57(19):4285-300.

19.

Generation of a drug resistance profile by quantitation of mdr-1/P-glycoprotein in the cell lines of the National Cancer Institute Anticancer Drug Screen.

Alvarez M, Paull K, Monks A, Hose C, Lee JS, Weinstein J, Grever M, Bates S, Fojo T.

J Clin Invest. 1995 May;95(5):2205-14.

20.

A structural analysis of the differential cytotoxicity of chemicals in the NCI-60 cancer cell lines.

Chakravarti SK, Klopman G.

Bioorg Med Chem. 2008 Apr 1;16(7):4052-63. doi: 10.1016/j.bmc.2008.01.024. Epub 2008 Jan 19.

PMID:
18243714
Items per page

Supplemental Content

Write to the Help Desk