Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Knockout mice in understanding the mechanism of action of lithium.

Agam G, Bersudsky Y, Berry GT, Moechars D, Lavi-Avnon Y, Belmaker RH.

Biochem Soc Trans. 2009 Oct;37(Pt 5):1121-5. doi: 10.1042/BST0371121.

PMID:
19754464
2.

Homozygote inositol transporter knockout mice show a lithium-like phenotype.

Bersudsky Y, Shaldubina A, Agam G, Berry GT, Belmaker RH.

Bipolar Disord. 2008 Jun;10(4):453-9. doi: 10.1111/j.1399-5618.2007.00546.x.

PMID:
18452441
3.

IMPA1 is essential for embryonic development and lithium-like pilocarpine sensitivity.

Cryns K, Shamir A, Van Acker N, Levi I, Daneels G, Goris I, Bouwknecht JA, Andries L, Kass S, Agam G, Belmaker H, Bersudsky Y, Steckler T, Moechars D.

Neuropsychopharmacology. 2008 Feb;33(3):674-84. Epub 2007 Apr 25.

4.

Glycogen synthase kinase-3beta heterozygote knockout mice as a model of findings in postmortem schizophrenia brain or as a model of behaviors mimicking lithium action: negative results.

Bersudsky Y, Shaldubina A, Kozlovsky N, Woodgett JR, Agam G, Belmaker RH.

Behav Pharmacol. 2008 May;19(3):217-24. doi: 10.1097/FBP.0b013e3282feb099.

PMID:
18469539
5.

Lithium-pilocarpine seizures as a model for lithium action in mania.

Belmaker RH, Bersudsky Y.

Neurosci Biobehav Rev. 2007;31(6):843-9. Epub 2007 May 18. Review.

PMID:
17602744
6.

Lack of lithium-like behavioral and molecular effects in IMPA2 knockout mice.

Cryns K, Shamir A, Shapiro J, Daneels G, Goris I, Van Craenendonck H, Straetemans R, Belmaker RH, Agam G, Moechars D, Steckler T.

Neuropsychopharmacology. 2007 Apr;32(4):881-91. Epub 2006 Jul 12.

7.

Validating GSK3 as an in vivo target of lithium action.

O'Brien WT, Klein PS.

Biochem Soc Trans. 2009 Oct;37(Pt 5):1133-8. doi: 10.1042/BST0371133. Review.

8.

Behavioral analyses of transgenic mice harboring bipolar disorder candidate genes, IMPA1 and IMPA2.

Ohnishi T, Watanabe A, Ohba H, Iwayama Y, Maekawa M, Yoshikawa T.

Neurosci Res. 2010 May;67(1):86-94. doi: 10.1016/j.neures.2010.02.003. Epub 2010 Feb 11.

PMID:
20153384
9.

IP3 accumulation and/or inositol depletion: two downstream lithium's effects that may mediate its behavioral and cellular changes.

Sade Y, Toker L, Kara NZ, Einat H, Rapoport S, Moechars D, Berry GT, Bersudsky Y, Agam G.

Transl Psychiatry. 2016 Dec 6;6(12):e968. doi: 10.1038/tp.2016.217.

10.

Inositol-deficient food augments a behavioral effect of long-term lithium treatment mediated by inositol monophosphatase inhibition: an animal model with relevance for bipolar disorder.

Shtein L, Agam G, Belmaker RH, Bersudsky Y.

J Clin Psychopharmacol. 2015 Apr;35(2):175-7. doi: 10.1097/JCP.0000000000000284.

PMID:
25679134
11.

The effect of lithium on expression of genes for inositol biosynthetic enzymes in mouse hippocampus; a comparison with the yeast model.

Shamir A, Shaltiel G, Greenberg ML, Belmaker RH, Agam G.

Brain Res Mol Brain Res. 2003 Jul 23;115(2):104-10. Erratum in: Brain Res Mol Brain Res. 2004 Apr 7;123(1-2):137.

PMID:
12877981
12.

Behavioural phenotyping of sodium-myo-inositol cotransporter heterozygous knockout mice with reduced brain inositol.

Shaldubina A, Buccafusca R, Johanson RA, Agam G, Belmaker RH, Berry GT, Bersudsky Y.

Genes Brain Behav. 2007 Apr;6(3):253-9. Epub 2006 Jul 17.

13.

Regional changes in rat brain inositol monophosphatase 1 (IMPase 1) activity with chronic lithium treatment.

Parthasarathy LK, Seelan RS, Wilson MA, Vadnal RE, Parthasarathy RN.

Prog Neuropsychopharmacol Biol Psychiatry. 2003 Feb;27(1):55-60.

PMID:
12551726
14.

The inositol monophosphatase inhibitor L-690,330 affects pilocarpine-behavior and the forced swim test.

Shtein L, Toker L, Bersudsky Y, Belmaker RH, Agam G.

Psychopharmacology (Berl). 2013 Jun;227(3):503-8. doi: 10.1007/s00213-013-2969-0. Epub 2013 Jan 24.

PMID:
23344554
15.

SMIT1 haploinsufficiency causes brain inositol deficiency without affecting lithium-sensitive behavior.

Shaldubina A, Johanson RA, O'Brien WT, Buccafusca R, Agam G, Belmaker RH, Klein PS, Bersudsky Y, Berry GT.

Mol Genet Metab. 2006 Aug;88(4):384-8. Epub 2006 Apr 27.

PMID:
16644257
16.

Myo-inositol-1-phosphate (MIP) synthase inhibition: in-vivo study in rats.

Einat H, Tian F, Belmaker RH, Frost JW.

J Neural Transm (Vienna). 2008;115(1):55-8. Epub 2007 Sep 10.

PMID:
17828434
17.

Inositol-related gene knockouts mimic lithium's effect on mitochondrial function.

Toker L, Bersudsky Y, Plaschkes I, Chalifa-Caspi V, Berry GT, Buccafusca R, Moechars D, Belmaker RH, Agam G.

Neuropsychopharmacology. 2014 Jan;39(2):319-28. doi: 10.1038/npp.2013.194. Epub 2013 Aug 8.

18.

Inhibition of inositol monophosphatase (IMPase) at the calbindin-D28k binding site: molecular and behavioral aspects.

Levi I, Eskira Y, Eisenstein M, Gilon C, Hoffman A, Tal-Gan Y, Fanous J, Bersudsky Y, Belmaker RH, Agam G, Almog O.

Eur Neuropsychopharmacol. 2013 Dec;23(12):1806-15. doi: 10.1016/j.euroneuro.2013.02.004. Epub 2013 Apr 22. Erratum in: Eur Neuropsychopharmacol. 2015 Nov;25(11):2185. Talgan, Yiftach [corrected to Tal-Gan, Yftah].

PMID:
23619164
19.

Myo-inositol monophosphatase: diverse effects of lithium, carbamazepine, and valproate.

Vadnal R, Parthasarathy R.

Neuropsychopharmacology. 1995 Jul;12(4):277-85.

20.

Molecular effects of lithium are partially mimicked by inositol-monophosphatase (IMPA)1 knockout mice in a brain region-dependent manner.

Damri O, Sade Y, Toker L, Bersudsky Y, Belmaker RH, Agam G, Azab AN.

Eur Neuropsychopharmacol. 2015 Mar;25(3):425-34. doi: 10.1016/j.euroneuro.2014.06.012. Epub 2014 Aug 7.

PMID:
25748680

Supplemental Content

Support Center