Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 162

1.

Both ATPase domains of ClpA are critical for processing of stable protein structures.

Kress W, Mutschler H, Weber-Ban E.

J Biol Chem. 2009 Nov 6;284(45):31441-52. doi: 10.1074/jbc.M109.022319. Epub 2009 Sep 2.

2.

An intrinsic degradation tag on the ClpA C-terminus regulates the balance of ClpAP complexes with different substrate specificity.

Maglica Z, Striebel F, Weber-Ban E.

J Mol Biol. 2008 Dec 12;384(2):503-11. doi: 10.1016/j.jmb.2008.09.046. Epub 2008 Sep 26.

PMID:
18835567
3.

ClpP hydrolyzes a protein substrate processively in the absence of the ClpA ATPase: mechanistic studies of ATP-independent proteolysis.

Jennings LD, Lun DS, Médard M, Licht S.

Biochemistry. 2008 Nov 4;47(44):11536-46. doi: 10.1021/bi801101p. Epub 2008 Oct 8.

PMID:
18839965
4.

Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis.

Singh SK, Rozycki J, Ortega J, Ishikawa T, Lo J, Steven AC, Maurizi MR.

J Biol Chem. 2001 Aug 3;276(31):29420-9. Epub 2001 May 9.

5.

ATPγS competes with ATP for binding at Domain 1 but not Domain 2 during ClpA catalyzed polypeptide translocation.

Miller JM, Lucius AL.

Biophys Chem. 2014 Jan;185:58-69. doi: 10.1016/j.bpc.2013.11.002. Epub 2013 Nov 13.

6.

Conserved residues in the N-domain of the AAA+ chaperone ClpA regulate substrate recognition and unfolding.

Erbse AH, Wagner JN, Truscott KN, Spall SK, Kirstein J, Zeth K, Turgay K, Mogk A, Bukau B, Dougan DA.

FEBS J. 2008 Apr;275(7):1400-10. doi: 10.1111/j.1742-4658.2008.06304.x. Epub 2008 Feb 14.

7.

The flexible attachment of the N-domains to the ClpA ring body allows their use on demand.

Cranz-Mileva S, Imkamp F, Kolygo K, Maglica Z, Kress W, Weber-Ban E.

J Mol Biol. 2008 Apr 25;378(2):412-24. doi: 10.1016/j.jmb.2008.02.047. Epub 2008 Feb 29.

PMID:
18358489
8.

Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation.

Hinnerwisch J, Fenton WA, Furtak KJ, Farr GW, Horwich AL.

Cell. 2005 Jul 1;121(7):1029-41.

9.

E. coli ClpA catalyzed polypeptide translocation is allosterically controlled by the protease ClpP.

Miller JM, Lin J, Li T, Lucius AL.

J Mol Biol. 2013 Aug 9;425(15):2795-812. doi: 10.1016/j.jmb.2013.04.019. Epub 2013 Apr 29.

10.

Crystal structure of the heterodimeric complex of the adaptor, ClpS, with the N-domain of the AAA+ chaperone, ClpA.

Guo F, Esser L, Singh SK, Maurizi MR, Xia D.

J Biol Chem. 2002 Nov 29;277(48):46753-62. Epub 2002 Sep 15.

11.

Turned on for degradation: ATPase-independent degradation by ClpP.

Bewley MC, Graziano V, Griffin K, Flanagan JM.

J Struct Biol. 2009 Feb;165(2):118-25. doi: 10.1016/j.jsb.2008.10.005. Epub 2008 Nov 11.

12.

ClpA and ClpP remain associated during multiple rounds of ATP-dependent protein degradation by ClpAP protease.

Singh SK, Guo F, Maurizi MR.

Biochemistry. 1999 Nov 9;38(45):14906-15.

PMID:
10555973
13.

Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP.

Hoskins JR, Singh SK, Maurizi MR, Wickner S.

Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8892-7.

14.

The Escherichia coli ClpA molecular chaperone self-assembles into tetramers.

Veronese PK, Stafford RP, Lucius AL.

Biochemistry. 2009 Oct 6;48(39):9221-33. doi: 10.1021/bi900935q.

PMID:
19650643
15.

Roles of the N-domains of the ClpA unfoldase in binding substrate proteins and in stable complex formation with the ClpP protease.

Hinnerwisch J, Reid BG, Fenton WA, Horwich AL.

J Biol Chem. 2005 Dec 9;280(49):40838-44. Epub 2005 Oct 5.

16.

At sixes and sevens: characterization of the symmetry mismatch of the ClpAP chaperone-assisted protease.

Beuron F, Maurizi MR, Belnap DM, Kocsis E, Booy FP, Kessel M, Steven AC.

J Struct Biol. 1998 Nov;123(3):248-59.

PMID:
9878579
17.

Structural analysis of the adaptor protein ClpS in complex with the N-terminal domain of ClpA.

Zeth K, Ravelli RB, Paal K, Cusack S, Bukau B, Dougan DA.

Nat Struct Biol. 2002 Dec;9(12):906-11.

PMID:
12426582
18.

Assembly pathway of an AAA+ protein: tracking ClpA and ClpAP complex formation in real time.

Kress W, Mutschler H, Weber-Ban E.

Biochemistry. 2007 May 29;46(21):6183-93. Epub 2007 May 4.

PMID:
17477547
19.

Crystallographic investigation of peptide binding sites in the N-domain of the ClpA chaperone.

Xia D, Esser L, Singh SK, Guo F, Maurizi MR.

J Struct Biol. 2004 Apr-May;146(1-2):166-79.

PMID:
15037248
20.

Crystal structure of ClpA, an Hsp100 chaperone and regulator of ClpAP protease.

Guo F, Maurizi MR, Esser L, Xia D.

J Biol Chem. 2002 Nov 29;277(48):46743-52. Epub 2002 Aug 29.

Supplemental Content

Support Center