Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 212

1.

Proton-coupled oxygen reduction at liquid-liquid interfaces catalyzed by cobalt porphine.

Hatay I, Su B, Li F, Méndez MA, Khoury T, Gros CP, Barbe JM, Ersoz M, Samec Z, Girault HH.

J Am Chem Soc. 2009 Sep 23;131(37):13453-9. doi: 10.1021/ja904569p.

PMID:
19715275
2.

Molecular electrocatalysis for oxygen reduction by cobalt porphyrins adsorbed at liquid/liquid interfaces.

Su B, Hatay I, Trojánek A, Samec Z, Khoury T, Gros CP, Barbe JM, Daina A, Carrupt PA, Girault HH.

J Am Chem Soc. 2010 Mar 3;132(8):2655-62. doi: 10.1021/ja908488s.

PMID:
20131825
3.

Proton-coupled electron-transfer reduction of dioxygen catalyzed by a saddle-distorted cobalt phthalocyanine.

Honda T, Kojima T, Fukuzumi S.

J Am Chem Soc. 2012 Mar 7;134(9):4196-206. doi: 10.1021/ja209978q. Epub 2012 Feb 21.

PMID:
22299646
4.

Role of proton-coupled electron transfer in O-O bond activation.

Rosenthal J, Nocera DG.

Acc Chem Res. 2007 Jul;40(7):543-53. Epub 2007 Jun 27. Review.

PMID:
17595052
5.

Energy conversion at liquid/liquid interfaces: artificial photosynthetic systems.

Volkov AG, Gugeshashvili MI, Deamer DW.

Electrochim Acta. 1995;40(18):2849-68. Review.

PMID:
11540307
7.

Oxygen reduction catalyzed by a fluorinated tetraphenylporphyrin free base at liquid/liquid interfaces.

Hatay I, Su B, Méndez MA, Corminboeuf C, Khoury T, Gros CP, Bourdillon M, Meyer M, Barbe JM, Ersoz M, Zális S, Samec Z, Girault HH.

J Am Chem Soc. 2010 Oct 6;132(39):13733-41. doi: 10.1021/ja103460p.

PMID:
20828124
8.

Bidirectional and unidirectional PCET in a molecular model of a cobalt-based oxygen-evolving catalyst.

Symes MD, Surendranath Y, Lutterman DA, Nocera DG.

J Am Chem Soc. 2011 Apr 13;133(14):5174-7. doi: 10.1021/ja110908v. Epub 2011 Mar 17.

PMID:
21413703
9.

Dioxygen reduction by cobalt(II) octaethylporphyrin at liquid|liquid interfaces.

Partovi-Nia R, Su B, Méndez MA, Habermeyer B, Gros CP, Barbe JM, Samec Z, Girault HH.

Chemphyschem. 2010 Sep 10;11(13):2979-84. doi: 10.1002/cphc.201000200.

PMID:
20607710
10.

Redox chemistry at liquid/liquid interfaces.

Volkov AG, Deamer DW.

Prog Colloid Polym Sci. 1997;103:21-8. Review.

PMID:
11541167
11.

Catalytic four-electron reduction of O2 via rate-determining proton-coupled electron transfer to a dinuclear cobalt-μ-1,2-peroxo complex.

Fukuzumi S, Mandal S, Mase K, Ohkubo K, Park H, Benet-Buchholz J, Nam W, Llobet A.

J Am Chem Soc. 2012 Jun 20;134(24):9906-9. doi: 10.1021/ja303674n. Epub 2012 Jun 8.

PMID:
22656065
12.

A readily-prepared, convergent, oxygen reduction electrocatalyst.

Chen J, Zhang W, Officer D, Swiegers GF, Wallace GG.

Chem Commun (Camb). 2007 Aug 28;(32):3353-5.

PMID:
18019496
13.

Hybrid bilayer membrane: a platform to study the role of proton flux on the efficiency of oxygen reduction by a molecular electrocatalyst.

Hosseini A, Barile CJ, Devadoss A, Eberspacher TA, Decreau RA, Collman JP.

J Am Chem Soc. 2011 Jul 27;133(29):11100-2. doi: 10.1021/ja204418j. Epub 2011 Jun 29.

PMID:
21699233
14.
15.

Water-soluble polymer-bound biomimetic analogues of cytochrome C oxidase catalyze 4e- reduction of O2 to water.

Collman JP, Fudickar W, Shiryaeva I.

Inorg Chem. 2003 Jun 2;42(11):3384-6.

PMID:
12767168
17.

Targeted proton delivery in the catalyzed reduction of oxygen to water by bimetallic pacman porphyrins.

Chang CJ, Loh ZH, Shi C, Anson FC, Nocera DG.

J Am Chem Soc. 2004 Aug 18;126(32):10013-20.

PMID:
15303875
18.
19.
20.

Supplemental Content

Support Center