Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 401

1.

Conditions of endoplasmic reticulum stress stimulate lipid droplet formation in Saccharomyces cerevisiae.

Fei W, Wang H, Fu X, Bielby C, Yang H.

Biochem J. 2009 Oct 23;424(1):61-7. doi: 10.1042/BJ20090785.

PMID:
19708857
2.

Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae.

Jacquier N, Choudhary V, Mari M, Toulmay A, Reggiori F, Schneiter R.

J Cell Sci. 2011 Jul 15;124(Pt 14):2424-37. doi: 10.1242/jcs.076836.

3.

Identification of mitogen-activated protein kinase signaling pathways that confer resistance to endoplasmic reticulum stress in Saccharomyces cerevisiae.

Chen Y, Feldman DE, Deng C, Brown JA, De Giacomo AF, Gaw AF, Shi G, Le QT, Brown JM, Koong AC.

Mol Cancer Res. 2005 Dec;3(12):669-77.

4.
5.

Cu, Zn superoxide dismutase and NADP(H) homeostasis are required for tolerance of endoplasmic reticulum stress in Saccharomyces cerevisiae.

Tan SX, Teo M, Lam YT, Dawes IW, Perrone GG.

Mol Biol Cell. 2009 Mar;20(5):1493-508. doi: 10.1091/mbc.E08-07-0697.

6.

Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast.

Fei W, Shui G, Gaeta B, Du X, Kuerschner L, Li P, Brown AJ, Wenk MR, Parton RG, Yang H.

J Cell Biol. 2008 Feb 11;180(3):473-82. doi: 10.1083/jcb.200711136.

8.

Pbn1p: an essential endoplasmic reticulum membrane protein required for protein processing in the endoplasmic reticulum of budding yeast.

Subramanian S, Woolford CA, Drill E, Lu M, Jones EW.

Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):939-44.

9.

An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER.

Markgraf DF, Klemm RW, Junker M, Hannibal-Bach HK, Ejsing CS, Rapoport TA.

Cell Rep. 2014 Jan 16;6(1):44-55. doi: 10.1016/j.celrep.2013.11.046.

10.

The ubiquitin-like (UBX)-domain-containing protein Ubx2/Ubxd8 regulates lipid droplet homeostasis.

Wang CW, Lee SC.

J Cell Sci. 2012 Jun 15;125(Pt 12):2930-9. doi: 10.1242/jcs.100230.

13.
14.

Expression of oleosin and perilipins in yeast promotes formation of lipid droplets from the endoplasmic reticulum.

Jacquier N, Mishra S, Choudhary V, Schneiter R.

J Cell Sci. 2013 Nov 15;126(Pt 22):5198-209. doi: 10.1242/jcs.131896.

15.

A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1.

Kimata Y, Oikawa D, Shimizu Y, Ishiwata-Kimata Y, Kohno K.

J Cell Biol. 2004 Nov 8;167(3):445-56.

16.

Suppressive effects of 4-phenylbutyrate on the aggregation of Pael receptors and endoplasmic reticulum stress.

Kubota K, Niinuma Y, Kaneko M, Okuma Y, Sugai M, Omura T, Uesugi M, Uehara T, Hosoi T, Nomura Y.

J Neurochem. 2006 Jun;97(5):1259-68.

17.

Evidence for the intimate relationship between vesicle budding from the ER and the unfolded protein response.

Sato M, Sato K, Nakano A.

Biochem Biophys Res Commun. 2002 Aug 23;296(3):560-7.

PMID:
12176017
18.

An essential dimer-forming subregion of the endoplasmic reticulum stress sensor Ire1.

Oikawa D, Kimata Y, Takeuchi M, Kohno K.

Biochem J. 2005 Oct 1;391(Pt 1):135-42.

19.

Zinc depletion activates the endoplasmic reticulum-stress sensor Ire1 via pleiotropic mechanisms.

Nguyen TS, Kohno K, Kimata Y.

Biosci Biotechnol Biochem. 2013;77(6):1337-9.

20.

Phospholipid demixing and the birth of a lipid droplet.

Zanghellini J, Wodlei F, von Gr├╝nberg HH.

J Theor Biol. 2010 Jun 7;264(3):952-61. doi: 10.1016/j.jtbi.2010.02.025.

PMID:
20184900
Items per page

Supplemental Content

Support Center