Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 85

1.

Impact of chromatin structures on DNA processing for genomic analyses.

Teytelman L, Ozaydin B, Zill O, Lefrançois P, Snyder M, Rine J, Eisen MB.

PLoS One. 2009 Aug 20;4(8):e6700. doi: 10.1371/journal.pone.0006700.

2.

Widespread misinterpretable ChIP-seq bias in yeast.

Park D, Lee Y, Bhupindersingh G, Iyer VR.

PLoS One. 2013 Dec 9;8(12):e83506. doi: 10.1371/journal.pone.0083506. eCollection 2013.

3.

A silencer promotes the assembly of silenced chromatin independently of recruitment.

Lynch PJ, Rusche LN.

Mol Cell Biol. 2009 Jan;29(1):43-56. doi: 10.1128/MCB.00983-08. Epub 2008 Oct 27.

4.

Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing.

Lefrançois P, Euskirchen GM, Auerbach RK, Rozowsky J, Gibson T, Yellman CM, Gerstein M, Snyder M.

BMC Genomics. 2009 Jan 21;10:37. doi: 10.1186/1471-2164-10-37.

5.

Extensive role of the general regulatory factors, Abf1 and Rap1, in determining genome-wide chromatin structure in budding yeast.

Ganapathi M, Palumbo MJ, Ansari SA, He Q, Tsui K, Nislow C, Morse RH.

Nucleic Acids Res. 2011 Mar;39(6):2032-44. doi: 10.1093/nar/gkq1161. Epub 2010 Nov 16.

6.

Genome-wide protein-DNA binding dynamics suggest a molecular clutch for transcription factor function.

Lickwar CR, Mueller F, Hanlon SE, McNally JG, Lieb JD.

Nature. 2012 Apr 11;484(7393):251-5. doi: 10.1038/nature10985.

7.

The association of yKu with subtelomeric core X sequences prevents recombination involving telomeric sequences.

Marvin ME, Becker MM, Noel P, Hardy S, Bertuch AA, Louis EJ.

Genetics. 2009 Oct;183(2):453-67, 1SI-13SI. doi: 10.1534/genetics.109.106682. Epub 2009 Aug 3.

8.

A detailed protocol for chromatin immunoprecipitation in the yeast Saccharomyces cerevisiae.

Grably M, Engelberg D.

Methods Mol Biol. 2010;638:211-24. doi: 10.1007/978-1-60761-611-5_16.

PMID:
20238272
9.

Condensin binding at distinct and specific chromosomal sites in the Saccharomyces cerevisiae genome.

Wang BD, Eyre D, Basrai M, Lichten M, Strunnikov A.

Mol Cell Biol. 2005 Aug;25(16):7216-25.

10.

Extensive low-affinity transcriptional interactions in the yeast genome.

Tanay A.

Genome Res. 2006 Aug;16(8):962-72. Epub 2006 Jun 29.

11.
12.

Position specific variation in the rate of evolution in transcription factor binding sites.

Moses AM, Chiang DY, Kellis M, Lander ES, Eisen MB.

BMC Evol Biol. 2003 Aug 28;3:19. Epub 2003 Aug 28.

13.

ChromatinDB: a database of genome-wide histone modification patterns for Saccharomyces cerevisiae.

O'Connor TR, Wyrick JJ.

Bioinformatics. 2007 Jul 15;23(14):1828-30. Epub 2007 May 7.

PMID:
17485428
14.

[Finding targets of transcriptional regulators--chromatin immunoprecipitation assay (ChIP)].

Kus-Liśkiewicz M, Widłak W.

Postepy Biochem. 2011;57(4):418-24. Review. Polish.

PMID:
22568174
15.

Meiosis-induced double-strand break sites determined by yeast chromatin structure.

Wu TC, Lichten M.

Science. 1994 Jan 28;263(5146):515-8.

PMID:
8290959
16.

ChIP-Seq to Analyze the Binding of Replication Proteins to Chromatin.

Ostrow AZ, Viggiani CJ, Aparicio JG, Aparicio OM.

Methods Mol Biol. 2015;1300:155-68. doi: 10.1007/978-1-4939-2596-4_11.

PMID:
25916712
17.

Structure, function and DNA composition of Saccharomyces cerevisiae chromatin loops.

Filipski J, Mucha M.

Gene. 2002 Oct 30;300(1-2):63-8.

PMID:
12468087
18.

Sequential recruitment of SAGA and TFIID in a genomic response to DNA damage in Saccharomyces cerevisiae.

Ghosh S, Pugh BF.

Mol Cell Biol. 2011 Jan;31(1):190-202. doi: 10.1128/MCB.00317-10. Epub 2010 Oct 18.

19.
20.

A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex.

Florio C, Moscariello M, Ederle S, Fasano R, Lanzuolo C, Pulitzer JF.

Gene. 2007 Jun 15;395(1-2):72-85. Epub 2007 Feb 20.

PMID:
17400406

Supplemental Content

Support Center