Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 111

1.

Long lifetimes of quantum-dot intersublevel transitions in the terahertz range.

Zibik EA, Grange T, Carpenter BA, Porter NE, Ferreira R, Bastard G, Stehr D, Winnerl S, Helm M, Liu HY, Skolnick MS, Wilson LR.

Nat Mater. 2009 Oct;8(10):803-7. doi: 10.1038/nmat2511. Epub 2009 Aug 16.

PMID:
19684587
2.

Intersublevel spectroscopy on single InAs-quantum dots by terahertz near-field microscopy.

Jacob R, Winnerl S, Fehrenbacher M, Bhattacharyya J, Schneider H, Wenzel MT, Ribbeck HG, Eng LM, Atkinson P, Schmidt OG, Helm M.

Nano Lett. 2012 Aug 8;12(8):4336-40. doi: 10.1021/nl302078w. Epub 2012 Jul 11.

PMID:
22775149
3.

Heterostructure terahertz devices.

Ryzhii V.

J Phys Condens Matter. 2008 Aug 19;20(38):380301. doi: 10.1088/0953-8984/20/38/380301. Epub 2008 Jul 7.

PMID:
21693805
4.

Direct observation of polarons in electron populated quantum dots by resonant Raman scattering.

Aslan B, Liu HC, Korkusinski M, Hawrylak P, Lockwood DJ.

J Nanosci Nanotechnol. 2008 Feb;8(2):789-94.

PMID:
18464407
5.

Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation.

Wan WJ, Li H, Zhou T, Cao JC.

Sci Rep. 2017 Mar 8;7:44109. doi: 10.1038/srep44109.

6.

Broadly tunable terahertz generation in mid-infrared quantum cascade lasers.

Vijayraghavan K, Jiang Y, Jang M, Jiang A, Choutagunta K, Vizbaras A, Demmerle F, Boehm G, Amann MC, Belkin MA.

Nat Commun. 2013;4:2021. doi: 10.1038/ncomms3021.

PMID:
23771177
7.

Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback.

Globisch B, Otto C, Schöll E, Lüdge K.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 2):046201. Epub 2012 Oct 3.

PMID:
23214657
8.

Charge Carrier Hopping Dynamics in Homogeneously Broadened PbS Quantum Dot Solids.

Gilmore RH, Lee EM, Weidman MC, Willard AP, Tisdale WA.

Nano Lett. 2017 Feb 8;17(2):893-901. doi: 10.1021/acs.nanolett.6b04201. Epub 2017 Jan 30.

PMID:
28100050
9.

Two-phonon processes of intraband relaxation in the terahertz regime in quantum dots.

Wang ZW, Li SS.

J Phys Condens Matter. 2011 Jun 8;23(22):225303. doi: 10.1088/0953-8984/23/22/225303. Epub 2011 May 19.

PMID:
21593554
10.

Circumventing the Manley-Rowe quantum efficiency limit in an optically pumped terahertz quantum-cascade amplifier.

Waldmueller I, Wanke MC, Chow WW.

Phys Rev Lett. 2007 Sep 14;99(11):117401. Epub 2007 Sep 14.

PMID:
17930470
11.

Spectroscopic Study of Terahertz Generation in Mid-Infrared Quantum Cascade Lasers.

Jiang Y, Vijayraghavan K, Jung S, Jiang A, Kim JH, Demmerle F, Boehm G, Amann MC, Belkin MA.

Sci Rep. 2016 Feb 16;6:21169. doi: 10.1038/srep21169.

12.

Design strategy for terahertz quantum dot cascade lasers.

Burnett BA, Williams BS.

Opt Express. 2016 Oct 31;24(22):25471-25481. doi: 10.1364/OE.24.025471.

13.

Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots.

Passmore BS, Adams DC, Ribaudo T, Wasserman D, Lyon S, Davids P, Chow WW, Shaner EA.

Nano Lett. 2011 Feb 9;11(2):338-42. doi: 10.1021/nl102412h. Epub 2011 Jan 7.

PMID:
21214167
14.

Terahertz ambipolar dual-wavelength quantum cascade laser.

Lever L, Hinchcliffe NM, Khanna SP, Dean P, Ikonic Z, Evans CA, Davies AG, Harrison P, Linfield EH, Kelsall RW.

Opt Express. 2009 Oct 26;17(22):19926-32. doi: 10.1364/OE.17.019926.

PMID:
19997216
15.

Terahertz intersublevel transitions in single self-assembled InAs quantum dots with variable electron numbers.

Zhang Y, Shibata K, Nagai N, Ndebeka-Bandou C, Bastard G, Hirakawa K.

Nano Lett. 2015 Feb 11;15(2):1166-70. doi: 10.1021/nl5042319. Epub 2015 Jan 16.

PMID:
25579415
16.

Few-cycle terahertz generation and spectroscopy of nanostructures.

Darmo J, Müller T, Parz W, Kröll J, Strasser G, Unterrainer K.

Philos Trans A Math Phys Eng Sci. 2004 Feb 15;362(1815):251-60; discussion 260-2.

17.

Planar integrated metasurfaces for highly-collimated terahertz quantum cascade lasers.

Liang G, Dupont E, Fathololoumi S, Wasilewski ZR, Ban D, Liang HK, Zhang Y, Yu SF, Li LH, Davies AG, Linfield EH, Liu HC, Wang QJ.

Sci Rep. 2014 Nov 18;4:7083. doi: 10.1038/srep07083.

18.

Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots.

Toma A, Tuccio S, Prato M, De Donato F, Perucchi A, Di Pietro P, Marras S, Liberale C, Proietti Zaccaria R, De Angelis F, Manna L, Lupi S, Di Fabrizio E, Razzari L.

Nano Lett. 2015 Jan 14;15(1):386-91. doi: 10.1021/nl503705w. Epub 2014 Dec 1.

PMID:
25422163
19.

Monte Carlo modeling of the dual-mode regime in quantum-well and quantum-dot semiconductor lasers.

Chusseau L, Philippe F, Disanto F.

Opt Express. 2014 Mar 10;22(5):5312-24. doi: 10.1364/OE.22.005312.

PMID:
24663872
20.

Coherent optical spectroscopy of a strongly driven quantum dot.

Xu X, Sun B, Berman PR, Steel DG, Bracker AS, Gammon D, Sham LJ.

Science. 2007 Aug 17;317(5840):929-32.

Supplemental Content

Support Center