Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 460

1.

Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model.

Pukkila-Worley R, Peleg AY, Tampakakis E, Mylonakis E.

Eukaryot Cell. 2009 Nov;8(11):1750-8. doi: 10.1128/EC.00163-09. Epub 2009 Aug 7.

2.

Asc1, a WD-repeat protein, is required for hyphal development and virulence in Candida albicans.

Liu X, Nie X, Ding Y, Chen J.

Acta Biochim Biophys Sin (Shanghai). 2010 Nov;42(11):793-800. doi: 10.1093/abbs/gmq093. Epub 2010 Oct 7.

PMID:
20929924
3.

Physiologic expression of the Candida albicans pescadillo homolog is required for virulence in a murine model of hematogenously disseminated candidiasis.

Uppuluri P, Chaturvedi AK, Jani N, Pukkila-Worley R, Monteagudo C, Mylonakis E, Köhler JR, Lopez Ribot JL.

Eukaryot Cell. 2012 Dec;11(12):1552-6. doi: 10.1128/EC.00171-12. Epub 2012 Oct 26.

4.

Candida albicans hyphal initiation and elongation.

Lu Y, Su C, Liu H.

Trends Microbiol. 2014 Dec;22(12):707-14. doi: 10.1016/j.tim.2014.09.001. Epub 2014 Sep 25. Review.

5.

Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans.

Cruz MR, Graham CE, Gagliano BC, Lorenz MC, Garsin DA.

Infect Immun. 2013 Jan;81(1):189-200. doi: 10.1128/IAI.00914-12. Epub 2012 Oct 31.

6.

Candida albicans Sfl2, a temperature-induced transcriptional regulator, is required for virulence in a murine gastrointestinal infection model.

Song W, Wang H, Chen J.

FEMS Yeast Res. 2011 Mar;11(2):209-22. doi: 10.1111/j.1567-1364.2010.00710.x. Epub 2011 Jan 14.

7.

The GRF10 homeobox gene regulates filamentous growth in the human fungal pathogen Candida albicans.

Ghosh AK, Wangsanut T, Fonzi WA, Rolfes RJ.

FEMS Yeast Res. 2015 Dec;15(8). pii: fov093. doi: 10.1093/femsyr/fov093. Epub 2015 Oct 15.

8.

Gymnemic acids inhibit hyphal growth and virulence in Candida albicans.

Vediyappan G, Dumontet V, Pelissier F, d'Enfert C.

PLoS One. 2013 Sep 11;8(9):e74189. doi: 10.1371/journal.pone.0074189. eCollection 2013.

9.

Candida albicans adhesin Als3p is dispensable for virulence in the mouse model of disseminated candidiasis.

Cleary IA, Reinhard SM, Miller CL, Murdoch C, Thornhill MH, Lazzell AL, Monteagudo C, Thomas DP, Saville SP.

Microbiology. 2011 Jun;157(Pt 6):1806-15. doi: 10.1099/mic.0.046326-0. Epub 2011 Mar 24.

10.

Roles of Candida albicans Gat2, a GATA-type zinc finger transcription factor, in biofilm formation, filamentous growth and virulence.

Du H, Guan G, Xie J, Sun Y, Tong Y, Zhang L, Huang G.

PLoS One. 2012;7(1):e29707. doi: 10.1371/journal.pone.0029707. Epub 2012 Jan 19.

11.

The role of Candida albicans SPT20 in filamentation, biofilm formation and pathogenesis.

Tan X, Fuchs BB, Wang Y, Chen W, Yuen GJ, Chen RB, Jayamani E, Anastassopoulou C, Pukkila-Worley R, Coleman JJ, Mylonakis E.

PLoS One. 2014 Apr 14;9(4):e94468. doi: 10.1371/journal.pone.0094468. eCollection 2014.

12.

Niche-specific requirement for hyphal wall protein 1 in virulence of Candida albicans.

Staab JF, Datta K, Rhee P.

PLoS One. 2013 Nov 8;8(11):e80842. doi: 10.1371/journal.pone.0080842. eCollection 2013.

13.

UME6 is a crucial downstream target of other transcriptional regulators of true hyphal development in Candida albicans.

Zeidler U, Lettner T, Lassnig C, Müller M, Lajko R, Hintner H, Breitenbach M, Bito A.

FEMS Yeast Res. 2009 Feb;9(1):126-42. doi: 10.1111/j.1567-1364.2008.00459.x. Epub 2008 Nov 15.

14.

The 65 kDa mannoprotein gene of Candida albicans encodes a putative beta-glucanase adhesin required for hyphal morphogenesis and experimental pathogenicity.

Sandini S, La Valle R, De Bernardis F, Macrì C, Cassone A.

Cell Microbiol. 2007 May;9(5):1223-38. Epub 2007 Jan 9.

PMID:
17217426
15.

Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans.

Sun L, Liao K, Wang D.

PLoS One. 2015 Feb 24;10(2):e0117695. doi: 10.1371/journal.pone.0117695. eCollection 2015.

16.

Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant.

Wartenberg A, Linde J, Martin R, Schreiner M, Horn F, Jacobsen ID, Jenull S, Wolf T, Kuchler K, Guthke R, Kurzai O, Forche A, d'Enfert C, Brunke S, Hube B.

PLoS Genet. 2014 Dec 4;10(12):e1004824. doi: 10.1371/journal.pgen.1004824. eCollection 2014 Dec.

17.

The Candida albicans phosphatase Inp51p interacts with the EH domain protein Irs4p, regulates phosphatidylinositol-4,5-bisphosphate levels and influences hyphal formation, the cell integrity pathway and virulence.

Badrane H, Nguyen MH, Cheng S, Kumar V, Derendorf H, Iczkowski KA, Clancy CJ.

Microbiology. 2008 Nov;154(Pt 11):3296-308. doi: 10.1099/mic.0.2008/018002-0.

PMID:
18957583
18.

Examination of the pathogenic potential of Candida albicans filamentous cells in an animal model of haematogenously disseminated candidiasis.

Cleary IA, Reinhard SM, Lazzell AL, Monteagudo C, Thomas DP, Lopez-Ribot JL, Saville SP.

FEMS Yeast Res. 2016 Mar;16(2):fow011. doi: 10.1093/femsyr/fow011. Epub 2016 Feb 5.

19.

Candida albicans strain-dependent virulence and Rim13p-mediated filamentation in experimental keratomycosis.

Mitchell BM, Wu TG, Jackson BE, Wilhelmus KR.

Invest Ophthalmol Vis Sci. 2007 Feb;48(2):774-80.

PMID:
17251477
20.

The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH.

Vylkova S, Carman AJ, Danhof HA, Collette JR, Zhou H, Lorenz MC.

MBio. 2011 May 17;2(3):e00055-11. doi: 10.1128/mBio.00055-11. Print 2011.

Supplemental Content

Support Center