Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 128

1.

Whole-body vibration improves walking function in individuals with spinal cord injury: a pilot study.

Ness LL, Field-Fote EC.

Gait Posture. 2009 Nov;30(4):436-40. doi: 10.1016/j.gaitpost.2009.06.016. Epub 2009 Aug 3.

2.

Locomotor training approaches for individuals with spinal cord injury: a preliminary report of walking-related outcomes.

Field-Fote EC, Lindley SD, Sherman AL.

J Neurol Phys Ther. 2005 Sep;29(3):127-37.

PMID:
16398945
3.

Gait quality is improved by locomotor training in individuals with SCI regardless of training approach.

Nooijen CF, Ter Hoeve N, Field-Fote EC.

J Neuroeng Rehabil. 2009 Oct 2;6:36. doi: 10.1186/1743-0003-6-36.

4.

Prediction of gait recovery in spinal cord injured individuals trained with robotic gait orthosis.

Niu X, Varoqui D, Kindig M, Mirbagheri MM.

J Neuroeng Rehabil. 2014 Mar 24;11:42. doi: 10.1186/1743-0003-11-42.

5.

A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: Effects on walking competency.

Kapadia N, Masani K, Catharine Craven B, Giangregorio LM, Hitzig SL, Richards K, Popovic MR.

J Spinal Cord Med. 2014 Sep;37(5):511-24. doi: 10.1179/2045772314Y.0000000263.

6.

Influence of Spinal Cord Integrity on Gait Control in Human Spinal Cord Injury.

Awai L, Bolliger M, Ferguson AR, Courtine G, Curt A.

Neurorehabil Neural Repair. 2016 Jul;30(6):562-72. doi: 10.1177/1545968315600524. Epub 2015 Oct 1.

7.

Influence of orthotic gait training with powered hip orthosis on walking in paraplegic patients.

Arazpour M, Bani MA, Hutchins SW, Curran S, Javanshir MA, Mousavi ME.

Disabil Rehabil Assist Technol. 2014 May;9(3):226-30. doi: 10.3109/17483107.2013.807442. Epub 2013 Jun 19.

PMID:
24749556
8.

Volitional muscle strength in the legs predicts changes in walking speed following locomotor training in people with chronic spinal cord injury.

Yang JF, Norton J, Nevett-Duchcherer J, Roy FD, Gross DP, Gorassini MA.

Phys Ther. 2011 Jun;91(6):931-43. doi: 10.2522/ptj.20100163. Epub 2011 Apr 21.

9.

Locomotor training improves premotoneuronal control after chronic spinal cord injury.

Knikou M, Mummidisetty CK.

J Neurophysiol. 2014 Jun 1;111(11):2264-75. doi: 10.1152/jn.00871.2013. Epub 2014 Mar 5.

10.

Effects of aerobic exercise training on fitness and walking-related outcomes in ambulatory individuals with chronic incomplete spinal cord injury.

DiPiro ND, Embry AE, Fritz SL, Middleton A, Krause JS, Gregory CM.

Spinal Cord. 2016 Sep;54(9):675-81. doi: 10.1038/sc.2015.212. Epub 2015 Dec 15.

11.

Locomotor training with body weight support in SCI: EMG improvement is more optimally expressed at a low testing speed.

Meyns P, Van de Crommert HW, Rijken H, van Kuppevelt DH, Duysens J.

Spinal Cord. 2014 Dec;52(12):887-93. doi: 10.1038/sc.2014.172. Epub 2014 Oct 14.

PMID:
25311847
12.

Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study.

Aach M, Cruciger O, Sczesny-Kaiser M, Höffken O, Meindl RCh, Tegenthoff M, Schwenkreis P, Sankai Y, Schildhauer TA.

Spine J. 2014 Dec 1;14(12):2847-53. doi: 10.1016/j.spinee.2014.03.042. Epub 2014 Apr 4.

PMID:
24704677
13.

Activity-based therapy for recovery of walking in individuals with chronic spinal cord injury: results from a randomized clinical trial.

Jones ML, Evans N, Tefertiller C, Backus D, Sweatman M, Tansey K, Morrison S.

Arch Phys Med Rehabil. 2014 Dec;95(12):2239-46.e2. doi: 10.1016/j.apmr.2014.07.400. Epub 2014 Aug 4.

PMID:
25102384
14.

Gait speed in relation to categories of functional ambulation after spinal cord injury.

van Hedel HJ; EMSCI Study Group.

Neurorehabil Neural Repair. 2009 May;23(4):343-50. doi: 10.1177/1545968308324224. Epub 2008 Nov 25.

PMID:
19036717
15.

The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study.

Fleerkotte BM, Koopman B, Buurke JH, van Asseldonk EH, van der Kooij H, Rietman JS.

J Neuroeng Rehabil. 2014 Mar 4;11:26. doi: 10.1186/1743-0003-11-26.

16.

Single-dose effects of whole body vibration on quadriceps strength in individuals with motor-incomplete spinal cord injury.

Bosveld R, Field-Fote EC.

J Spinal Cord Med. 2015 Nov;38(6):784-91. doi: 10.1179/2045772315Y.0000000002. Epub 2015 Feb 9.

17.

Muscle activity, cross-sectional area, and density following passive standing and whole body vibration: A case series.

Masani K, Alizadeh-Meghrazi M, Sayenko DG, Zariffa J, Moore C, Giangregorio L, Popovic MR, Catharine Craven B.

J Spinal Cord Med. 2014 Sep;37(5):575-81. doi: 10.1179/2045772314Y.0000000255. Epub 2014 Jul 24.

18.

Vibration elicits involuntary, step-like behavior in individuals with spinal cord injury.

Field-Fote E, Ness LL, Ionno M.

Neurorehabil Neural Repair. 2012 Sep;26(7):861-9. doi: 10.1177/1545968311433603. Epub 2012 Feb 9.

PMID:
22328683
19.

Balance training improves static stability and gait in chronic incomplete spinal cord injury subjects: a pilot study.

Tamburella F, Scivoletto G, Molinari M.

Eur J Phys Rehabil Med. 2013 Jun;49(3):353-64. Epub 2013 Mar 13.

20.

Comparison of training methods to improve walking in persons with chronic spinal cord injury: a randomized clinical trial.

Alexeeva N, Sames C, Jacobs PL, Hobday L, Distasio MM, Mitchell SA, Calancie B.

J Spinal Cord Med. 2011;34(4):362-79. doi: 10.1179/2045772311Y.0000000018.

Supplemental Content

Support Center