Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 144


Mechanism of cyclizing NAD to cyclic ADP-ribose by ADP-ribosyl cyclase and CD38.

Graeff R, Liu Q, Kriksunov IA, Kotaka M, Oppenheimer N, Hao Q, Lee HC.

J Biol Chem. 2009 Oct 2;284(40):27629-36. doi: 10.1074/jbc.M109.030965. Epub 2009 Jul 28.


Structural basis for enzymatic evolution from a dedicated ADP-ribosyl cyclase to a multifunctional NAD hydrolase.

Liu Q, Graeff R, Kriksunov IA, Jiang H, Zhang B, Oppenheimer N, Lin H, Potter BV, Lee HC, Hao Q.

J Biol Chem. 2009 Oct 2;284(40):27637-45. doi: 10.1074/jbc.M109.031005. Epub 2009 Jul 28.


Porcine CD38 exhibits prominent secondary NAD(+) cyclase activity.

Ting KY, Leung CF, Graeff RM, Lee HC, Hao Q, Kotaka M.

Protein Sci. 2016 Mar;25(3):650-61. doi: 10.1002/pro.2859. Epub 2016 Jan 12.


Cytosolic CD38 protein forms intact disulfides and is active in elevating intracellular cyclic ADP-ribose.

Zhao YJ, Zhang HM, Lam CM, Hao Q, Lee HC.

J Biol Chem. 2011 Jun 24;286(25):22170-7. doi: 10.1074/jbc.M111.228379. Epub 2011 Apr 26.


Insights into the mechanism of bovine CD38/NAD+glycohydrolase from the X-ray structures of its Michaelis complex and covalently-trapped intermediates.

Egea PF, Muller-Steffner H, Kuhn I, Cakir-Kiefer C, Oppenheimer NJ, Stroud RM, Kellenberger E, Schuber F.

PLoS One. 2012;7(4):e34918. doi: 10.1371/journal.pone.0034918. Epub 2012 Apr 18.


CD38 and ADP-ribosyl cyclase catalyze the synthesis of a dimeric ADP-ribose that potentiates the calcium-mobilizing activity of cyclic ADP-ribose.

De Flora A, Guida L, Franco L, Zocchi E, Bruzzone S, Benatti U, Damonte G, Lee HC.

J Biol Chem. 1997 May 16;272(20):12945-51.


Dynamic conformations of the CD38-mediated NAD cyclization captured in a single crystal.

Zhang H, Graeff R, Chen Z, Zhang L, Zhang L, Lee H, Hao Q.

J Mol Biol. 2011 Jan 28;405(4):1070-8. doi: 10.1016/j.jmb.2010.11.044. Epub 2010 Dec 8.


Measuring CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) activity by reverse-phase HPLC.

Kirchberger T, Guse AH.

Cold Spring Harb Protoc. 2013 Jun 1;2013(6):569-73. doi: 10.1101/pdb.prot073007.


A single residue at the active site of CD38 determines its NAD cyclizing and hydrolyzing activities.

Graeff R, Munshi C, Aarhus R, Johns M, Lee HC.

J Biol Chem. 2001 Apr 13;276(15):12169-73. Epub 2001 Jan 22.


Redesign of Schistosoma mansoni NAD+ catabolizing enzyme: active site H103W mutation restores ADP-ribosyl cyclase activity.

Kuhn I, Kellenberger E, Rognan D, Lund FE, Muller-Steffner H, Schuber F.

Biochemistry. 2006 Oct 3;45(39):11867-78.


Enzyme properties of Aplysia ADP-ribosyl cyclase: comparison with NAD glycohydrolase of CD38 antigen.

Inageda K, Takahashi K, Tokita K, Nishina H, Kanaho Y, Kukimoto I, Kontani K, Hoshino S, Katada T.

J Biochem. 1995 Jan;117(1):125-31.


Characterization of the active site of ADP-ribosyl cyclase.

Munshi C, Thiel DJ, Mathews II, Aarhus R, Walseth TF, Lee HC.

J Biol Chem. 1999 Oct 22;274(43):30770-7.


ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP.

Aarhus R, Graeff RM, Dickey DM, Walseth TF, Lee HC.

J Biol Chem. 1995 Dec 22;270(51):30327-33.


Probing Aplysia californica adenosine 5'-diphosphate ribosyl cyclase for substrate binding requirements: design of potent inhibitors.

Migaud ME, Pederick RL, Bailey VC, Potter BV.

Biochemistry. 1999 Jul 13;38(28):9105-14.


Identification of the enzymatic active site of CD38 by site-directed mutagenesis.

Munshi C, Aarhus R, Graeff R, Walseth TF, Levitt D, Lee HC.

J Biol Chem. 2000 Jul 14;275(28):21566-71.


Human CD38 is an authentic NAD(P)+ glycohydrolase.

Berthelier V, Tixier JM, Muller-Steffner H, Schuber F, Deterre P.

Biochem J. 1998 Mar 15;330 ( Pt 3):1383-90.


Unifying mechanism for Aplysia ADP-ribosyl cyclase and CD38/NAD(+) glycohydrolases.

Cakir-Kiefer C, Muller-Steffner H, Schuber F.

Biochem J. 2000 Jul 1;349(Pt 1):203-10.

Supplemental Content

Support Center