Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 150

1.

Mitochondrial permeability transition pore in Alzheimer's disease: cyclophilin D and amyloid beta.

Du H, Yan SS.

Biochim Biophys Acta. 2010 Jan;1802(1):198-204. doi: 10.1016/j.bbadis.2009.07.005. Epub 2009 Jul 16. Review.

2.

Cyclophilin D deficiency rescues axonal mitochondrial transport in Alzheimer's neurons.

Guo L, Du H, Yan S, Wu X, McKhann GM, Chen JX, Yan SS.

PLoS One. 2013;8(1):e54914. doi: 10.1371/journal.pone.0054914. Epub 2013 Jan 31.

3.

Discovery of non-peptidic small molecule inhibitors of cyclophilin D as neuroprotective agents in Aβ-induced mitochondrial dysfunction.

Park I, Londhe AM, Lim JW, Park BG, Jung SY, Lee JY, Lim SM, No KT, Lee J, Pae AN.

J Comput Aided Mol Des. 2017 Oct;31(10):929-941. doi: 10.1007/s10822-017-0067-9. Epub 2017 Sep 14.

PMID:
28913661
4.

Mitochondrial permeability transition pore is a potential drug target for neurodegeneration.

Rao VK, Carlson EA, Yan SS.

Biochim Biophys Acta. 2014 Aug;1842(8):1267-72. doi: 10.1016/j.bbadis.2013.09.003. Epub 2013 Sep 18. Review.

5.

Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease.

Du H, Guo L, Fang F, Chen D, Sosunov AA, McKhann GM, Yan Y, Wang C, Zhang H, Molkentin JD, Gunn-Moore FJ, Vonsattel JP, Arancio O, Chen JX, Yan SD.

Nat Med. 2008 Oct;14(10):1097-105. doi: 10.1038/nm.1868. Epub 2008 Sep 21.

6.

Synthesis and evaluation of 2-(3-arylureido)pyridines and 2-(3-arylureido)pyrazines as potential modulators of Aβ-induced mitochondrial dysfunction in Alzheimer's disease.

Elkamhawy A, Park JE, Hassan AHE, Pae AN, Lee J, Park BG, Roh EJ.

Eur J Med Chem. 2018 Jan 20;144:529-543. doi: 10.1016/j.ejmech.2017.12.045. Epub 2017 Dec 14.

PMID:
29288949
7.

Cyclophilin D deficiency improves mitochondrial function and learning/memory in aging Alzheimer disease mouse model.

Du H, Guo L, Zhang W, Rydzewska M, Yan S.

Neurobiol Aging. 2011 Mar;32(3):398-406. doi: 10.1016/j.neurobiolaging.2009.03.003. Epub 2009 Apr 11.

8.

Cyclophilin D deficiency rescues Aβ-impaired PKA/CREB signaling and alleviates synaptic degeneration.

Du H, Guo L, Wu X, Sosunov AA, McKhann GM, Chen JX, Yan SS.

Biochim Biophys Acta. 2014 Dec;1842(12 Pt A):2517-27. doi: 10.1016/j.bbadis.2013.03.004. Epub 2013 Mar 16.

9.

Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore.

Nguyen TT, Stevens MV, Kohr M, Steenbergen C, Sack MN, Murphy E.

J Biol Chem. 2011 Nov 18;286(46):40184-92. doi: 10.1074/jbc.M111.243469. Epub 2011 Sep 19.

10.

The consequences of mitochondrial amyloid beta-peptide in Alzheimer's disease.

Muirhead KE, Borger E, Aitken L, Conway SJ, Gunn-Moore FJ.

Biochem J. 2010 Feb 24;426(3):255-70. doi: 10.1042/BJ20091941. Review.

PMID:
20175748
11.

Inhibition of Aβ(1-40) fibril formation by cyclophilins.

Villmow M, Baumann M, Malesevic M, Sachs R, Hause G, Fändrich M, Balbach J, Schiene-Fischer C.

Biochem J. 2016 May 15;473(10):1355-68. doi: 10.1042/BCJ20160098. Epub 2016 Mar 18.

PMID:
26994210
12.

The mitochondrial permeability transition pore regulates nitric oxide-mediated apoptosis of neurons induced by target deprivation.

Martin LJ, Adams NA, Pan Y, Price A, Wong M.

J Neurosci. 2011 Jan 5;31(1):359-70. doi: 10.1523/JNEUROSCI.2225-10.2011.

13.

Inhibition of mitochondrial permeability transition pore opening is involved in the protective effects of mortalin overexpression against beta-amyloid-induced apoptosis in SH-SY5Y cells.

Qu M, Zhou Z, Chen C, Li M, Pei L, Yang J, Wang Y, Li L, Liu C, Zhang G, Yu Z, Wang D.

Neurosci Res. 2012 Jan;72(1):94-102. doi: 10.1016/j.neures.2011.09.009. Epub 2011 Oct 5.

PMID:
22001761
14.

HAX-1 regulates cyclophilin-D levels and mitochondria permeability transition pore in the heart.

Lam CK, Zhao W, Liu GS, Cai WF, Gardner G, Adly G, Kranias EG.

Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):E6466-75. doi: 10.1073/pnas.1508760112. Epub 2015 Nov 9.

15.

Discovery of 1-(3-(benzyloxy)pyridin-2-yl)-3-(2-(piperazin-1-yl)ethyl)urea: A new modulator for amyloid beta-induced mitochondrial dysfunction.

Elkamhawy A, Park JE, Hassan AHE, Ra H, Pae AN, Lee J, Park BG, Moon B, Park HM, Roh EJ.

Eur J Med Chem. 2017 Mar 10;128:56-69. doi: 10.1016/j.ejmech.2016.12.057. Epub 2016 Dec 29.

PMID:
28152427
16.

Wnt Signaling Prevents the Aβ Oligomer-Induced Mitochondrial Permeability Transition Pore Opening Preserving Mitochondrial Structure in Hippocampal Neurons.

Arrázola MS, Ramos-Fernández E, Cisternas P, Ordenes D, Inestrosa NC.

PLoS One. 2017 Jan 6;12(1):e0168840. doi: 10.1371/journal.pone.0168840. eCollection 2017.

17.

Mitochondrial dysfunction: different routes to Alzheimer's disease therapy.

Picone P, Nuzzo D, Caruana L, Scafidi V, Di Carlo M.

Oxid Med Cell Longev. 2014;2014:780179. doi: 10.1155/2014/780179. Epub 2014 Aug 20. Review.

18.

CypD: The Key to the Death Door.

Fayaz SM, Raj YV, Krishnamurthy RG.

CNS Neurol Disord Drug Targets. 2015;14(5):654-63. Review.

PMID:
25921742
19.

Cyclophilin D and myocardial ischemia-reperfusion injury: a fresh perspective.

Alam MR, Baetz D, Ovize M.

J Mol Cell Cardiol. 2015 Jan;78:80-9. doi: 10.1016/j.yjmcc.2014.09.026. Epub 2014 Oct 2. Review.

PMID:
25281838
20.

Overexpression of mitochondrial Hsp75 protects neural stem cells against microglia-derived soluble factor-induced neurotoxicity by regulating mitochondrial permeability transition pore opening in vitro.

Wang Y, Lin J, Chen QZ, Zhu N, Jiang DQ, Li MX, Wang Y.

Int J Mol Med. 2015 Dec;36(6):1487-96. doi: 10.3892/ijmm.2015.2380. Epub 2015 Oct 19.

Supplemental Content

Support Center