Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 219

2.

Outer and inner membrane proteins compose an arginine-agmatine exchange system in Chlamydophila pneumoniae.

Smith CB, Graham DE.

J Bacteriol. 2008 Nov;190(22):7431-40. doi: 10.1128/JB.00652-08. Epub 2008 Sep 12.

3.

Characterization of the activity and expression of arginine decarboxylase in human and animal Chlamydia pathogens.

Bliven KA, Fisher DJ, Maurelli AT.

FEMS Microbiol Lett. 2012 Dec;337(2):140-6. doi: 10.1111/1574-6968.12021. Epub 2012 Oct 29.

4.

Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39.

Read TD, Brunham RC, Shen C, Gill SR, Heidelberg JF, White O, Hickey EK, Peterson J, Utterback T, Berry K, Bass S, Linher K, Weidman J, Khouri H, Craven B, Bowman C, Dodson R, Gwinn M, Nelson W, DeBoy R, Kolonay J, McClarty G, Salzberg SL, Eisen J, Fraser CM.

Nucleic Acids Res. 2000 Mar 15;28(6):1397-406.

5.
6.

Characterization of an acid-dependent arginine decarboxylase enzyme from Chlamydophila pneumoniae.

Giles TN, Graham DE.

J Bacteriol. 2007 Oct;189(20):7376-83. Epub 2007 Aug 10.

7.

Identification of phylogenetic position in the Chlamydiaceae family for Chlamydia strains released from monkeys and humans with chlamydial pathology.

Karaulov A, Aleshkin V, Slobodenyuk V, Grechishnikova O, Afanasyev S, Lapin B, Dzhikidze E, Nesvizhsky Y, Evsegneeva I, Voropayeva E, Afanasyev M, Aleshkin A, Metelskaya V, Yegorova E, Bayrakova A.

Infect Dis Obstet Gynecol. 2010;2010:130760. doi: 10.1155/2010/130760. Epub 2010 Jun 30.

8.

Multi locus sequence typing of Chlamydiales: clonal groupings within the obligate intracellular bacteria Chlamydia trachomatis.

Pannekoek Y, Morelli G, Kusecek B, Morré SA, Ossewaarde JM, Langerak AA, van der Ende A.

BMC Microbiol. 2008 Feb 28;8:42. doi: 10.1186/1471-2180-8-42.

9.

Evolutionary relationships among members of the genus Chlamydia based on 16S ribosomal DNA analysis.

Pettersson B, Andersson A, Leitner T, Olsvik O, Uhlén M, Storey C, Black CM.

J Bacteriol. 1997 Jul;179(13):4195-205.

10.
11.

Analysis of pmpD expression and PmpD post-translational processing during the life cycle of Chlamydia trachomatis serovars A, D, and L2.

Kiselev AO, Skinner MC, Lampe MF.

PLoS One. 2009;4(4):e5191. doi: 10.1371/journal.pone.0005191. Epub 2009 Apr 15.

13.

Characterization of Chlamydia trachomatis plasmid-encoded open reading frames.

Gong S, Yang Z, Lei L, Shen L, Zhong G.

J Bacteriol. 2013 Sep;195(17):3819-26. doi: 10.1128/JB.00511-13. Epub 2013 Jun 21.

15.

In silico scrutiny of genes revealing phylogenetic congruence with clinical prevalence or tropism properties of Chlamydia trachomatis strains.

Ferreira R, Antelo M, Nunes A, Borges V, Damião V, Borrego MJ, Gomes JP.

G3 (Bethesda). 2014 Nov 5;5(1):9-19. doi: 10.1534/g3.114.015354.

16.

Deep comparative genomics among Chlamydia trachomatis lymphogranuloma venereum isolates highlights genes potentially involved in pathoadaptation.

Borges V, Gomes JP.

Infect Genet Evol. 2015 Jun;32:74-88. doi: 10.1016/j.meegid.2015.02.026. Epub 2015 Mar 3.

PMID:
25745888
17.

Genetic differences in the Chlamydia trachomatis tryptophan synthase alpha-subunit can explain variations in serovar pathogenesis.

Shaw AC, Christiansen G, Roepstorff P, Birkelund S.

Microbes Infect. 2000 May;2(6):581-92.

PMID:
10884608
18.
19.
20.

Diversity of Chlamydia trachomatis major outer membrane protein genes.

Stephens RS, Sanchez-Pescador R, Wagar EA, Inouye C, Urdea MS.

J Bacteriol. 1987 Sep;169(9):3879-85.

Supplemental Content

Support Center