Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 117

1.

Use of forward pressure level to minimize the influence of acoustic standing waves during probe-microphone hearing-aid verification.

McCreery RW, Pittman A, Lewis J, Neely ST, Stelmachowicz PG.

J Acoust Soc Am. 2009 Jul;126(1):15-24. doi: 10.1121/1.3143142.

2.

Using average correction factors to improve the estimated sound pressure level near the tympanic membrane.

LaRae Recker K, Zhang T, Lin W.

J Am Acad Audiol. 2012 Oct;23(9):733-50. doi: 10.3766/jaaa.23.9.7.

PMID:
23072965
3.

Distribution of standing-wave errors in real-ear sound-level measurements.

Richmond SA, Kopun JG, Neely ST, Tan H, Gorga MP.

J Acoust Soc Am. 2011 May;129(5):3134-40. doi: 10.1121/1.3569726.

4.

Test-retest reliability of probe-microphone verification in children fitted with open and closed hearing aid tips.

Kim H, Ricketts TA.

J Am Acad Audiol. 2013 Jul-Aug;24(7):635-42. doi: 10.3766/jaaa.24.7.11.

PMID:
24047950
5.

Miniature microphone probe tube measurements in the external auditory canal.

Hellstrom PA, Axelsson A.

J Acoust Soc Am. 1993 Feb;93(2):907-19.

PMID:
8445126
6.

Comparison of in-situ calibration methods for quantifying input to the middle ear.

Lewis JD, McCreery RW, Neely ST, Stelmachowicz PG.

J Acoust Soc Am. 2009 Dec;126(6):3114-24. doi: 10.1121/1.3243310.

7.

Basic acoustic considerations of ear canal probe measurements.

Dirks DD, Kincaid GE.

Ear Hear. 1987 Oct;8(5 Suppl):60S-67S.

PMID:
3678652
8.
9.

The effect of reference microphone placement on sound pressure levels at an ear level hearing aid microphone.

Feigin JA, Barlow NL, Stelmachowicz PG.

Ear Hear. 1990 Oct;11(5):321-6.

PMID:
2262080
10.

Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay.

Puria S, Allen JB.

J Acoust Soc Am. 1998 Dec;104(6):3463-81.

PMID:
9857506
11.

Sound pressure distribution and power flow within the gerbil ear canal from 100 Hz to 80 kHz.

Ravicz ME, Olson ES, Rosowski JJ.

J Acoust Soc Am. 2007 Oct;122(4):2154-73.

12.

The effect of occluded ear impedances on the eardrum SPL produced by hearing aids.

Gilman S, Dirks DD, Stern R.

J Acoust Soc Am. 1981 Aug;70(2):370-86.

PMID:
7288025
13.

A new method to estimate sound energy entering the middle ear.

Chen S, Deng J, Bian L, Li G.

Conf Proc IEEE Eng Med Biol Soc. 2013;2013:29-32. doi: 10.1109/EMBC.2013.6609429.

PMID:
24109616
14.

A probe earmold system for measuring eardrum SPL under hearing-aid conditions.

Gilman S, Dirks DD.

Scand Audiol. 1984;13(1):15-22.

PMID:
6719011
15.

Effect of earmold fit on predicted real ear SPL using a real ear to coupler difference procedure.

Hoover BM, Stelmachowicz PG, Lewis DE.

Ear Hear. 2000 Aug;21(4):310-7.

PMID:
10981607
16.

Effect of probe tube insertion depth on spectral measures of speech.

Caldwell M, Souza PE, Tremblay KL.

Trends Amplif. 2006 Sep;10(3):145-54.

17.

Effect of calibration method on distortion-product otoacoustic emission measurements at and around 4 kHz.

Reuven ML, Neely ST, Kopun JG, Rasetshwane DM, Allen JB, Tan H, Gorga MP.

Ear Hear. 2013 Nov-Dec;34(6):779-88. doi: 10.1097/AUD.0b013e3182994f15.

18.

Effect of reference microphone location and loudspeaker azimuth on probe tube microphone measurements.

Ickes MA, Hawkins DB, Cooper WA.

J Am Acad Audiol. 1991 Jul;2(3):156-63.

PMID:
1768884
19.

Effects of ear-canal standing waves on measurements of distortion-product otoacoustic emissions.

Whitehead ML, Stagner BB, Lonsbury-Martin BL, Martin GK.

J Acoust Soc Am. 1995 Dec;98(6):3200-14.

PMID:
8550945
20.

Transverse pressure distributions in a simple model ear canal occluded by a hearing aid test fixture.

Stinson MR, Daigle GA.

J Acoust Soc Am. 2007 Jun;121(6):3689-702.

PMID:
17552720

Supplemental Content

Support Center