Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 84

1.

Xeno-free defined conditions for culture of human embryonic stem cells, neural stem cells and dopaminergic neurons derived from them.

Swistowski A, Peng J, Han Y, Swistowska AM, Rao MS, Zeng X.

PLoS One. 2009 Jul 14;4(7):e6233. doi: 10.1371/journal.pone.0006233.

2.

Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions.

Swistowski A, Peng J, Liu Q, Mali P, Rao MS, Cheng L, Zeng X.

Stem Cells. 2010 Oct;28(10):1893-904. doi: 10.1002/stem.499.

3.

Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture.

Schulz TC, Noggle SA, Palmarini GM, Weiler DA, Lyons IG, Pensa KA, Meedeniya AC, Davidson BP, Lambert NA, Condie BG.

Stem Cells. 2004;22(7):1218-38.

4.

Scalable production of transplantable dopaminergic neurons from hESCs and iPSCs in xeno-free defined conditions.

Swistowski A, Zeng X.

Curr Protoc Stem Cell Biol. 2012 Aug;Chapter 2:Unit2D.12. doi: 10.1002/9780470151808.sc02d12s22.

PMID:
22872425
5.

Gene expression profile of neuronal progenitor cells derived from hESCs: activation of chromosome 11p15.5 and comparison to human dopaminergic neurons.

Freed WJ, Chen J, B├Ąckman CM, Schwartz CM, Vazin T, Cai J, Spivak CE, Lupica CR, Rao MS, Zeng X.

PLoS One. 2008 Jan 9;3(1):e1422. doi: 10.1371/journal.pone.0001422.

6.

Novel autogenic feeders derived from human embryonic stem cells (hESCs) support an undifferentiated status of hESCs in xeno-free culture conditions.

Chen HF, Chuang CY, Shieh YK, Chang HW, Ho HN, Kuo HC.

Hum Reprod. 2009 May;24(5):1114-25. doi: 10.1093/humrep/dep003. Epub 2009 Feb 6.

PMID:
19202140
7.

Self-contained induction of neurons from human embryonic stem cells.

Okuno T, Nakayama T, Konishi N, Michibata H, Wakimoto K, Suzuki Y, Nito S, Inaba T, Nakano I, Muramatsu S, Takano M, Kondo Y, Inoue N.

PLoS One. 2009 Jul 21;4(7):e6318. doi: 10.1371/journal.pone.0006318.

8.

Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products.

Li Y, Powell S, Brunette E, Lebkowski J, Mandalam R.

Biotechnol Bioeng. 2005 Sep 20;91(6):688-98.

PMID:
15971228
9.

Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions.

Kirkeby A, Grealish S, Wolf DA, Nelander J, Wood J, Lundblad M, Lindvall O, Parmar M.

Cell Rep. 2012 Jun 28;1(6):703-14. doi: 10.1016/j.celrep.2012.04.009. Epub 2012 May 26.

10.

Optimizing dopaminergic differentiation of pluripotent stem cells for the manufacture of dopaminergic neurons for transplantation.

Liu Q, Pedersen OZ, Peng J, Couture LA, Rao MS, Zeng X.

Cytotherapy. 2013 Aug;15(8):999-1010. doi: 10.1016/j.jcyt.2013.03.006. Epub 2013 May 7.

PMID:
23664011
11.

Efficient derivation of functional dopaminergic neurons from human embryonic stem cells on a large scale.

Cho MS, Hwang DY, Kim DW.

Nat Protoc. 2008;3(12):1888-94. doi: 10.1038/nprot.2008.188.

PMID:
19008875
12.

One year survival and significant reversal of motor deficits in parkinsonian rats transplanted with hESC derived dopaminergic neurons.

Geeta R, Ramnath RL, Rao HS, Chandra V.

Biochem Biophys Res Commun. 2008 Aug 22;373(2):258-64. doi: 10.1016/j.bbrc.2008.06.022. Epub 2008 Jun 17.

PMID:
18565328
13.

Dopaminergic differentiation of human embryonic stem cells.

Zeng X, Cai J, Chen J, Luo Y, You ZB, Fotter E, Wang Y, Harvey B, Miura T, Backman C, Chen GJ, Rao MS, Freed WJ.

Stem Cells. 2004;22(6):925-40.

14.

A simple method for large-scale generation of dopamine neurons from human embryonic stem cells.

Morizane A, Darsalia V, Guloglu MO, Hjalt T, Carta M, Li JY, Brundin P.

J Neurosci Res. 2010 Dec;88(16):3467-78. doi: 10.1002/jnr.22515.

PMID:
20981866
15.

Directed differentiation of human embryonic stem cell-line HUES9 to dopaminergic neurons in a serum-free defined culture niche.

Datta I, Ganapathy K, Tattikota SM, Bhonde R.

Cell Biol Int. 2013 Jan;37(1):54-64. doi: 10.1002/cbin.10012. Epub 2012 Nov 19.

PMID:
23319322
16.

Embryonic stem cell-derived L1 overexpressing neural aggregates enhance recovery in Parkinsonian mice.

Cui YF, Hargus G, Xu JC, Schmid JS, Shen YQ, Glatzel M, Schachner M, Bernreuther C.

Brain. 2010 Jan;133(Pt 1):189-204. doi: 10.1093/brain/awp290. Epub 2009 Dec 7.

PMID:
19995872
17.

Extended periods of neural induction and propagation of embryonic stem cell-derived neural progenitors with EGF and FGF2 enhances Lmx1a expression and neurogenic potential.

Zeng WR, Fabb SR, Haynes JM, Pouton CW.

Neurochem Int. 2011 Sep;59(3):394-403. doi: 10.1016/j.neuint.2011.04.002. Epub 2011 May 23.

PMID:
21624410
18.

In vitro neural differentiation of human embryonic stem cells using a low-density mouse embryonic fibroblast feeder protocol.

Ozolek JA, Jane EP, Esplen JE, Petrosko P, Wehn AK, Erb TM, Mucko SE, Cote LC, Sammak PJ.

Methods Mol Biol. 2010;584:71-95. doi: 10.1007/978-1-60761-369-5_4.

PMID:
19907972
19.

Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells.

Cho MS, Lee YE, Kim JY, Chung S, Cho YH, Kim DS, Kang SM, Lee H, Kim MH, Kim JH, Leem JW, Oh SK, Choi YM, Hwang DY, Chang JW, Kim DW.

Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3392-7. doi: 10.1073/pnas.0712359105. Epub 2008 Feb 27.

20.

Human embryonic stem cell-derived neural precursors as a continuous, stable, and on-demand source for human dopamine neurons.

Ko JY, Park CH, Koh HC, Cho YH, Kyhm JH, Kim YS, Lee I, Lee YS, Lee SH.

J Neurochem. 2007 Nov;103(4):1417-29. Epub 2007 Sep 13.

Supplemental Content

Support Center