Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Interactions between cells with distinct mutations in c-MYC and Pten in prostate cancer.

Kim J, Eltoum IE, Roh M, Wang J, Abdulkadir SA.

PLoS Genet. 2009 Jul;5(7):e1000542. doi: 10.1371/journal.pgen.1000542.

2.

A mouse model of heterogeneous, c-MYC-initiated prostate cancer with loss of Pten and p53.

Kim J, Roh M, Doubinskaia I, Algarroba GN, Eltoum IE, Abdulkadir SA.

Oncogene. 2012 Jan 19;31(3):322-32. doi: 10.1038/onc.2011.236.

3.

Combined MYC Activation and Pten Loss Are Sufficient to Create Genomic Instability and Lethal Metastatic Prostate Cancer.

Hubbard GK, Mutton LN, Khalili M, McMullin RP, Hicks JL, Bianchi-Frias D, Horn LA, Kulac I, Moubarek MS, Nelson PS, Yegnasubramanian S, De Marzo AM, Bieberich CJ.

Cancer Res. 2016 Jan 15;76(2):283-92. doi: 10.1158/0008-5472.CAN-14-3280.

4.

Loss of Nkx3.1 leads to the activation of discrete downstream target genes during prostate tumorigenesis.

Song H, Zhang B, Watson MA, Humphrey PA, Lim H, Milbrandt J.

Oncogene. 2009 Sep 17;28(37):3307-19. doi: 10.1038/onc.2009.181.

5.

Klf5 deletion promotes Pten deletion-initiated luminal-type mouse prostate tumors through multiple oncogenic signaling pathways.

Xing C, Ci X, Sun X, Fu X, Zhang Z, Dong EN, Hao ZZ, Dong JT.

Neoplasia. 2014 Nov 20;16(11):883-99. doi: 10.1016/j.neo.2014.09.006.

6.

Transient induction of ING4 by Myc drives prostate epithelial cell differentiation and its disruption drives prostate tumorigenesis.

Berger PL, Frank SB, Schulz VV, Nollet EA, Edick MJ, Holly B, Chang TT, Hostetter G, Kim S, Miranti CK.

Cancer Res. 2014 Jun 15;74(12):3357-68. doi: 10.1158/0008-5472.CAN-13-3076.

7.

RapidCaP, a novel GEM model for metastatic prostate cancer analysis and therapy, reveals myc as a driver of Pten-mutant metastasis.

Cho H, Herzka T, Zheng W, Qi J, Wilkinson JE, Bradner JE, Robinson BD, Castillo-Martin M, Cordon-Cardo C, Trotman LC.

Cancer Discov. 2014 Mar;4(3):318-33. doi: 10.1158/2159-8290.CD-13-0346.

8.

Caveolin-1 upregulation contributes to c-Myc-induced high-grade prostatic intraepithelial neoplasia and prostate cancer.

Yang G, Goltsov AA, Ren C, Kurosaka S, Edamura K, Logothetis R, DeMayo FJ, Troncoso P, Blando J, DiGiovanni J, Thompson TC.

Mol Cancer Res. 2012 Feb;10(2):218-29. doi: 10.1158/1541-7786.MCR-11-0451.

9.

MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells.

Iwata T, Schultz D, Hicks J, Hubbard GK, Mutton LN, Lotan TL, Bethel C, Lotz MT, Yegnasubramanian S, Nelson WG, Dang CV, Xu M, Anele U, Koh CM, Bieberich CJ, De Marzo AM.

PLoS One. 2010 Feb 25;5(2):e9427. doi: 10.1371/journal.pone.0009427.

10.

A novel PTEN/mutant p53/c-Myc/Bcl-XL axis mediates context-dependent oncogenic effects of PTEN with implications for cancer prognosis and therapy.

Huang X, Zhang Y, Tang Y, Butler N, Kim J, Guessous F, Schiff D, Mandell J, Abounader R.

Neoplasia. 2013 Aug;15(8):952-65.

11.

Nkx3.1 and Myc crossregulate shared target genes in mouse and human prostate tumorigenesis.

Anderson PD, McKissic SA, Logan M, Roh M, Franco OE, Wang J, Doubinskaia I, van der Meer R, Hayward SW, Eischen CM, Eltoum IE, Abdulkadir SA.

J Clin Invest. 2012 May;122(5):1907-19. doi: 10.1172/JCI58540.

12.

The pace of prostatic intraepithelial neoplasia development is determined by the timing of Pten tumor suppressor gene excision.

Luchman HA, Benediktsson H, Villemaire ML, Peterson AC, Jirik FR.

PLoS One. 2008;3(12):e3940. doi: 10.1371/journal.pone.0003940.

13.

Prostatic neoplasia in transgenic mice with prostate-directed overexpression of the c-myc oncoprotein.

Zhang X, Lee C, Ng PY, Rubin M, Shabsigh A, Buttyan R.

Prostate. 2000 Jun 1;43(4):278-85.

PMID:
10861747
14.

Irs2 inactivation suppresses tumor progression in Pten+/- mice.

Szabolcs M, Keniry M, Simpson L, Reid LJ, Koujak S, Schiff SC, Davidian G, Licata S, Gruvberger-Saal S, Murty VV, Nandula S, Efstratiadis A, Kushner JA, White MF, Parsons R.

Am J Pathol. 2009 Jan;174(1):276-86. doi: 10.2353/ajpath.2009.080086.

15.

GLIPR1 suppresses prostate cancer development through targeted oncoprotein destruction.

Li L, Ren C, Yang G, Fattah EA, Goltsov AA, Kim SM, Lee JS, Park S, Demayo FJ, Ittmann MM, Troncoso P, Thompson TC.

Cancer Res. 2011 Dec 15;71(24):7694-704. doi: 10.1158/0008-5472.CAN-11-1714.

16.

Additive Effect of Zfhx3/Atbf1 and Pten Deletion on Mouse Prostatic Tumorigenesis.

Sun X, Xing C, Fu X, Li J, Zhang B, Frierson HF Jr, Dong JT.

J Genet Genomics. 2015 Jul 20;42(7):373-82. doi: 10.1016/j.jgg.2015.06.004.

17.

Differential p53-independent outcomes of p19(Arf) loss in oncogenesis.

Chen Z, Carracedo A, Lin HK, Koutcher JA, Behrendt N, Egia A, Alimonti A, Carver BS, Gerald W, Teruya-Feldstein J, Loda M, Pandolfi PP.

Sci Signal. 2009 Aug 18;2(84):ra44. doi: 10.1126/scisignal.2000053.

18.

Temporally controlled ablation of PTEN in adult mouse prostate epithelium generates a model of invasive prostatic adenocarcinoma.

Ratnacaram CK, Teletin M, Jiang M, Meng X, Chambon P, Metzger D.

Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2521-6. doi: 10.1073/pnas.0712021105.

19.

Prostate cancer induced by loss of Apc is restrained by TGFβ signaling.

Bjerke GA, Pietrzak K, Melhuish TA, Frierson HF Jr, Paschal BM, Wotton D.

PLoS One. 2014 Mar 20;9(3):e92800. doi: 10.1371/journal.pone.0092800.

20.

Estrogen receptor alpha drives proliferation in PTEN-deficient prostate carcinoma by stimulating survival signaling, MYC expression and altering glucose sensitivity.

Takizawa I, Lawrence MG, Balanathan P, Rebello R, Pearson HB, Garg E, Pedersen J, Pouliot N, Nadon R, Watt MJ, Taylor RA, Humbert P, Topisirovic I, Larsson O, Risbridger GP, Furic L.

Oncotarget. 2015 Jan 20;6(2):604-16.

Items per page

Supplemental Content

Support Center