Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 197

1.
2.

Adaptive noise reduction method for DSPI fringes based on bi-dimensional ensemble empirical mode decomposition.

Zhou Y, Li H.

Opt Express. 2011 Sep 12;19(19):18207-15. doi: 10.1364/OE.19.018207.

PMID:
21935187
3.

Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition.

Li S, Su X, Chen W, Xiang L.

J Opt Soc Am A Opt Image Sci Vis. 2009 May;26(5):1195-201.

PMID:
19412238
4.

Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns.

Zhou X, Podoleanu AG, Yang Z, Yang T, Zhao H.

Opt Express. 2012 Oct 22;20(22):24247-62. doi: 10.1364/OE.20.024247.

PMID:
23187187
5.

Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition.

Bernini MB, Federico A, Kaufmann GH.

Appl Opt. 2008 May 10;47(14):2592-8.

PMID:
18470254
6.

Multivariate empirical mode decomposition approach for adaptive denoising of fringe patterns.

Zhou X, Yang T, Zou H, Zhao H.

Opt Lett. 2012 Jun 1;37(11):1904-6. doi: 10.1364/OL.37.001904.

PMID:
22660068
7.

Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform.

Gdeisat MA, Burton DR, Lalor MJ.

Appl Opt. 2006 Dec 1;45(34):8722-32.

PMID:
17119568
8.

Fault diagnosis of rotating machinery based on an adaptive ensemble empirical mode decomposition.

Lei Y, Li N, Lin J, Wang S.

Sensors (Basel). 2013 Dec 9;13(12):16950-64. doi: 10.3390/s131216950.

9.

Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform.

Bernini MB, Federico A, Kaufmann GH.

Appl Opt. 2009 Dec 20;48(36):6862-9. doi: 10.1364/AO.48.006862.

PMID:
20029587
10.

Automatic fringe enhancement with novel bidimensional sinusoids-assisted empirical mode decomposition.

Wang C, Kemao Q, Da F.

Opt Express. 2017 Oct 2;25(20):24299-24311. doi: 10.1364/OE.25.024299.

PMID:
29041375
11.
12.

Fringe-projection profilometry based on two-dimensional empirical mode decomposition.

Zheng S, Cao Y.

Appl Opt. 2013 Nov 1;52(31):7648-53. doi: 10.1364/AO.52.007648.

PMID:
24216669
13.

Denoising and extracting background from fringe patterns using midpoint-based bidimensional empirical mode decomposition.

Wielgus M, Patorski K.

Appl Opt. 2014 Apr 1;53(10):B215-22. doi: 10.1364/AO.53.00B215.

PMID:
24787206
14.

Fringe pattern demodulation with a two-dimensional digital phase-locked loop algorithm.

Gdeisat MA, Burton DR, Lalor MJ.

Appl Opt. 2002 Sep 10;41(26):5479-87.

PMID:
12224770
15.

Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform.

Trusiak M, Patorski K, Wielgus M.

Opt Express. 2012 Oct 8;20(21):23463-79. doi: 10.1364/OE.20.023463.

PMID:
23188310
16.

Spatial fringe pattern analysis using the two-dimensional continuous wavelet transform employing a cost function.

Abid AZ, Gdeisat MA, Burton DR, Lalor MJ, Lilley F.

Appl Opt. 2007 Aug 20;46(24):6120-6.

PMID:
17712376
17.

Variational image decomposition for automatic background and noise removal of fringe patterns.

Zhu X, Chen Z, Tang C.

Opt Lett. 2013 Feb 1;38(3):275-7. doi: 10.1364/OL.38.000275.

PMID:
23381409
18.

Application of S-transform profilometry in eliminating nonlinearity in fringe pattern.

Zhong M, Chen W, Jiang M.

Appl Opt. 2012 Feb 10;51(5):577-87. doi: 10.1364/AO.51.000577.

PMID:
22330289
19.
20.

Windowed Fourier transform for fringe pattern analysis: addendum.

Kemao Q.

Appl Opt. 2004 Jun 10;43(17):3472-3.

PMID:
15219029

Supplemental Content

Support Center