Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

Multiple hereditary exostosis, EXT genes, and skeletal development.

Sandell LJ.

J Bone Joint Surg Am. 2009 Jul;91 Suppl 4:58-62. doi: 10.2106/JBJS.I.00391. No abstract available.

PMID:
19571069
2.

The link between heparan sulfate and hereditary bone disease: finding a function for the EXT family of putative tumor suppressor proteins.

Duncan G, McCormick C, Tufaro F.

J Clin Invest. 2001 Aug;108(4):511-6. Review. No abstract available.

3.

Reevaluation of a genetic model for the development of exostosis in hereditary multiple exostosis.

Hall CR, Cole WG, Haynes R, Hecht JT.

Am J Med Genet. 2002 Sep 15;112(1):1-5.

PMID:
12239711
4.

The molecular and cellular basis of exostosis formation in hereditary multiple exostoses.

Reijnders CM, Hogendoorn PC, Bovée JV.

Int J Exp Pathol. 2009 Apr;90(2):190-1; author reply 191-3. doi: 10.1111/j.1365-2613.2009.00654.x. No abstract available.

5.

Glycosaminoglycans in the blood of hereditary multiple exostoses patients: Half reduction of heparan sulfate to chondroitin sulfate ratio and the possible diagnostic application.

Anower-E-Khuda MF, Matsumoto K, Habuchi H, Morita H, Yokochi T, Shimizu K, Kimata K.

Glycobiology. 2013 Jul;23(7):865-76. doi: 10.1093/glycob/cwt024. Epub 2013 Mar 20.

PMID:
23514715
6.

Diminished levels of the putative tumor suppressor proteins EXT1 and EXT2 in exostosis chondrocytes.

Bernard MA, Hall CE, Hogue DA, Cole WG, Scott A, Snuggs MB, Clines GA, Lüdecke HJ, Lovett M, Van Winkle WB, Hecht JT.

Cell Motil Cytoskeleton. 2001 Feb;48(2):149-62.

PMID:
11169766
7.

EXT 1 gene mutation induces chondrocyte cytoskeletal abnormalities and defective collagen expression in the exostoses.

Legeai-Mallet L, Rossi A, Benoist-Lasselin C, Piazza R, Mallet JF, Delezoide AL, Munnich A, Bonaventure J, Zylberberg L.

J Bone Miner Res. 2000 Aug;15(8):1489-500.

8.

New perspectives on the molecular basis of hereditary bone tumours.

McCormick C, Duncan G, Tufaro F.

Mol Med Today. 1999 Nov;5(11):481-6. Review.

PMID:
10529789
9.

The molecular and cellular basis of exostosis formation in hereditary multiple exostoses.

Trebicz-Geffen M, Robinson D, Evron Z, Glaser T, Fridkin M, Kollander Y, Vlodavsky I, Ilan N, Law KF, Cheah KS, Chan D, Werner H, Nevo Z.

Int J Exp Pathol. 2008 Oct;89(5):321-31. doi: 10.1111/j.1365-2613.2008.00589.x. Epub 2008 Apr 30.

10.

[Proteoglycan core glycosyltransferases].

Uyama T, Kitagawa H, Sugahara K.

Tanpakushitsu Kakusan Koso. 2003 Jun;48(8 Suppl):1019-26. Review. Japanese. No abstract available.

PMID:
12807004
11.

Heparan sulfate in skeletal development, growth, and pathology: the case of hereditary multiple exostoses.

Huegel J, Sgariglia F, Enomoto-Iwamoto M, Koyama E, Dormans JP, Pacifici M.

Dev Dyn. 2013 Sep;242(9):1021-32. doi: 10.1002/dvdy.24010. Epub 2013 Jul 29. Review.

12.

Mutations in the EXT1 and EXT2 genes in hereditary multiple exostoses.

Wuyts W, Van Hul W, De Boulle K, Hendrickx J, Bakker E, Vanhoenacker F, Mollica F, Lüdecke HJ, Sayli BS, Pazzaglia UE, Mortier G, Hamel B, Conrad EU, Matsushita M, Raskind WH, Willems PJ.

Am J Hum Genet. 1998 Feb;62(2):346-54.

13.

Etiological point mutations in the hereditary multiple exostoses gene EXT1: a functional analysis of heparan sulfate polymerase activity.

Cheung PK, McCormick C, Crawford BE, Esko JD, Tufaro F, Duncan G.

Am J Hum Genet. 2001 Jul;69(1):55-66. Epub 2001 Jun 5.

14.

No haploinsufficiency but loss of heterozygosity for EXT in multiple osteochondromas.

Reijnders CM, Waaijer CJ, Hamilton A, Buddingh EP, Dijkstra SP, Ham J, Bakker E, Szuhai K, Karperien M, Hogendoorn PC, Stringer SE, Bovée JV.

Am J Pathol. 2010 Oct;177(4):1946-57. doi: 10.2353/ajpath.2010.100296. Epub 2010 Sep 2.

15.

Mutation frequencies of EXT1 and EXT2 in 43 Japanese families with hereditary multiple exostoses.

Seki H, Kubota T, Ikegawa S, Haga N, Fujioka F, Ohzeki S, Wakui K, Yoshikawa H, Takaoka K, Fukushima Y.

Am J Med Genet. 2001 Feb 15;99(1):59-62.

PMID:
11170095
16.

Loss of function in heparan sulfate elongation genes EXT1 and EXT 2 results in improved nitric oxide bioavailability and endothelial function.

Mooij HL, Cabrales P, Bernelot Moens SJ, Xu D, Udayappan SD, Tsai AG, van der Sande MA, de Groot E, Intaglietta M, Kastelein JJ, Dallinga-Thie GM, Esko JD, Stroes ES, Nieuwdorp M.

J Am Heart Assoc. 2014 Dec 2;3(6):e001274. doi: 10.1161/JAHA.114.001274.

17.

[From gene to disease; hereditary multiple exostoses].

Wuyts W, Bovée JV, Hogendoorn PC.

Ned Tijdschr Geneeskd. 2002 Jan 26;146(4):162-4. Review. Dutch.

PMID:
11845565
18.

[EXT1 and EXT2 mutation identified by denaturing high performance liquid chromatograph in three families with hereditary multiple exostoses].

Zhang M, Liu SG, Li FF, Zhou WH, Jin XH, Ma X.

Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2007 Dec;24(6):646-51. Chinese.

PMID:
18067075
19.

Molecular basis of multiple exostoses: mutations in the EXT1 and EXT2 genes.

Wuyts W, Van Hul W.

Hum Mutat. 2000;15(3):220-7. Review.

PMID:
10679937
20.

Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation.

Han C, Belenkaya TY, Khodoun M, Tauchi M, Lin X, Lin X.

Development. 2004 Apr;131(7):1563-75. Epub 2004 Mar 3.

Supplemental Content

Support Center