Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 30

1.

The road less traveled: modulating signal transduction enzymes by inhibiting their protein-protein interactions.

Arkin MR, Whitty A.

Curr Opin Chem Biol. 2009 Jun;13(3):284-90. doi: 10.1016/j.cbpa.2009.05.125. Epub 2009 Jun 22. Review.

PMID:
19553156
4.

SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7.

Inman GJ, Nicolás FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS.

Mol Pharmacol. 2002 Jul;62(1):65-74.

5.

Heat shock protein 90 (Hsp90) regulates the stability of transforming growth factor beta-activated kinase 1 (TAK1) in interleukin-1beta-induced cell signaling.

Shi L, Zhang Z, Fang S, Xu J, Liu J, Shen J, Fang F, Luo L, Yin Z.

Mol Immunol. 2009 Feb;46(4):541-50. doi: 10.1016/j.molimm.2008.07.019. Epub 2008 Oct 31.

PMID:
18950863
6.

Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1-MEK-mitogen-activated protein kinase signalling pathway.

Schulte TW, Blagosklonny MV, Romanova L, Mushinski JF, Monia BP, Johnston JF, Nguyen P, Trepel J, Neckers LM.

Mol Cell Biol. 1996 Oct;16(10):5839-45.

7.

[Involvement of Hsp90 in the quality control of signal transducing proteins].

Miyata Y.

Tanpakushitsu Kakusan Koso. 2004 May;49(7 Suppl):862-6. Review. Japanese. No abstract available.

PMID:
15168480
9.

New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors.

Faivre S, Djelloul S, Raymond E.

Semin Oncol. 2006 Aug;33(4):407-20. Review.

PMID:
16890796
10.

The Hsp90-specific inhibitor geldanamycin selectively disrupts kinase-mediated signaling events of T-lymphocyte activation.

Schnaider T, Somogyi J, Csermely P, Szamel M.

Cell Stress Chaperones. 2000 Jan;5(1):52-61.

11.

Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins.

Marcu MG, Schulte TW, Neckers L.

J Natl Cancer Inst. 2000 Feb 2;92(3):242-8.

PMID:
10655441
12.

Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways.

Klippel A, Reinhard C, Kavanaugh WM, Apell G, Escobedo MA, Williams LT.

Mol Cell Biol. 1996 Aug;16(8):4117-27.

13.

MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans.

Meneghini MD, Ishitani T, Carter JC, Hisamoto N, Ninomiya-Tsuji J, Thorpe CJ, Hamill DR, Matsumoto K, Bowerman B.

Nature. 1999 Jun 24;399(6738):793-7.

PMID:
10391246
14.

Hsp90: chaperoning signal transduction.

Richter K, Buchner J.

J Cell Physiol. 2001 Sep;188(3):281-90. Review.

PMID:
11473354
15.
16.

Rit, a non-lipid-modified Ras-related protein, transforms NIH3T3 cells without activating the ERK, JNK, p38 MAPK or PI3K/Akt pathways.

Rusyn EV, Reynolds ER, Shao H, Grana TM, Chan TO, Andres DA, Cox AD.

Oncogene. 2000 Sep 28;19(41):4685-94.

17.

Rac-1 dependent stimulation of the JNK/SAPK signaling pathway by Vav.

Crespo P, Bustelo XR, Aaronson DS, Coso OA, Lopez-Barahona M, Barbacid M, Gutkind JS.

Oncogene. 1996 Aug 1;13(3):455-60.

PMID:
8760286
18.

The role of Hsp90N, a new member of the Hsp90 family, in signal transduction and neoplastic transformation.

Grammatikakis N, Vultur A, Ramana CV, Siganou A, Schweinfest CW, Watson DK, Raptis L.

J Biol Chem. 2002 Mar 8;277(10):8312-20. Epub 2001 Dec 20.

19.

PLK1 as an oncology target: current status and future potential.

McInnes C, Wyatt MD.

Drug Discov Today. 2011 Jul;16(13-14):619-25. doi: 10.1016/j.drudis.2011.05.002. Epub 2011 May 13. Review.

PMID:
21601650
20.

Supplemental Content

Support Center