Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 115

1.

Integrity of N- and C-termini is important for E. coli Hsp31 chaperone activity.

Sastry MS, Zhou W, Baneyx F.

Protein Sci. 2009 Jul;18(7):1439-47. doi: 10.1002/pro.158.

2.

The linker-loop region of Escherichia coli chaperone Hsp31 functions as a gate that modulates high-affinity substrate binding at elevated temperatures.

Sastry MS, Quigley PM, Hol WG, Baneyx F.

Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8587-92. Epub 2004 Jun 1.

4.

A new native EcHsp31 structure suggests a key role of structural flexibility for chaperone function.

Quigley PM, Korotkov K, Baneyx F, Hol WG.

Protein Sci. 2004 Jan;13(1):269-77.

6.

Peptidase activity of the Escherichia coli Hsp31 chaperone.

Malki A, Caldas T, Abdallah J, Kern R, Eckey V, Kim SJ, Cha SS, Mori H, Richarme G.

J Biol Chem. 2005 Apr 15;280(15):14420-6. Epub 2004 Nov 18.

7.

Chaperone Hsp31 contributes to acid resistance in stationary-phase Escherichia coli.

Mujacic M, Baneyx F.

Appl Environ Microbiol. 2007 Feb;73(3):1014-8. Epub 2006 Dec 8.

8.

Combination of the human prolyl isomerase FKBP12 with unrelated chaperone domains leads to chimeric folding enzymes with high activity.

Geitner AJ, Schmid FX.

J Mol Biol. 2012 Jul 20;420(4-5):335-49. doi: 10.1016/j.jmb.2012.04.018. Epub 2012 Apr 24.

PMID:
22542528
9.

Structural alteration of Escherichia coli Hsp31 by thermal unfolding increases chaperone activity.

Choi D, Ryu KS, Park C.

Biochim Biophys Acta. 2013 Feb;1834(2):621-8. doi: 10.1016/j.bbapap.2012.11.006. Epub 2012 Nov 30.

PMID:
23202248
10.
11.

The N-terminal domain of Escherichia coli ClpB enhances chaperone function.

Chow IT, Barnett ME, Zolkiewski M, Baneyx F.

FEBS Lett. 2005 Aug 15;579(20):4242-8.

12.

Hsp31 of Escherichia coli K-12 is glyoxalase III.

Subedi KP, Choi D, Kim I, Min B, Park C.

Mol Microbiol. 2011 Aug;81(4):926-36. doi: 10.1111/j.1365-2958.2011.07736.x. Epub 2011 Jul 6.

13.

The crystal structure of Escherichia coli heat shock protein YedU reveals three potential catalytic active sites.

Zhao Y, Liu D, Kaluarachchi WD, Bellamy HD, White MA, Fox RO.

Protein Sci. 2003 Oct;12(10):2303-11.

14.

Crystal structure of constitutively monomeric E. coli Hsp33 mutant with chaperone activity.

Chi SW, Jeong DG, Woo JR, Lee HS, Park BC, Kim BY, Erikson RL, Ryu SE, Kim SJ.

FEBS Lett. 2011 Feb 18;585(4):664-70. doi: 10.1016/j.febslet.2011.01.029. Epub 2011 Jan 23.

15.

Structure, stability, and chaperone function of alphaA-crystallin: role of N-terminal region.

Kundu M, Sen PC, Das KP.

Biopolymers. 2007 Jun 15;86(3):177-92.

PMID:
17345631
16.

Importance of the D and E helices of the molecular chaperone DnaK for ATP binding and substrate release.

Slepenkov SV, Patchen B, Peterson KM, Witt SN.

Biochemistry. 2003 May 20;42(19):5867-76.

PMID:
12741845
17.

Hsp31, the Escherichia coli yedU gene product, is a molecular chaperone whose activity is inhibited by ATP at high temperatures.

Sastry MS, Korotkov K, Brodsky Y, Baneyx F.

J Biol Chem. 2002 Nov 29;277(48):46026-34. Epub 2002 Sep 15.

18.

The 1.6-A crystal structure of the class of chaperones represented by Escherichia coli Hsp31 reveals a putative catalytic triad.

Quigley PM, Korotkov K, Baneyx F, Hol WG.

Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3137-42. Epub 2003 Mar 5.

19.

Crystal structures of human DJ-1 and Escherichia coli Hsp31, which share an evolutionarily conserved domain.

Lee SJ, Kim SJ, Kim IK, Ko J, Jeong CS, Kim GH, Park C, Kang SO, Suh PG, Lee HS, Cha SS.

J Biol Chem. 2003 Nov 7;278(45):44552-9. Epub 2003 Aug 25.

20.

Defining the structure of the substrate-free state of the DnaK molecular chaperone.

Swain JF, Sivendran R, Gierasch LM.

Biochem Soc Symp. 2001;(68):69-82.

PMID:
11573348

Supplemental Content

Support Center