Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

Structure-based rational design of a phosphotriesterase.

Jackson CJ, Weir K, Herlt A, Khurana J, Sutherland TD, Horne I, Easton C, Russell RJ, Scott C, Oakeshott JG.

Appl Environ Microbiol. 2009 Aug;75(15):5153-6. doi: 10.1128/AEM.00629-09. Epub 2009 Jun 5.

2.

The organophosphate-degrading enzyme from Agrobacterium radiobacter displays mechanistic flexibility for catalysis.

Ely F, Hadler KS, Gahan LR, Guddat LW, Ollis DL, Schenk G.

Biochem J. 2010 Dec 15;432(3):565-73. doi: 10.1042/BJ20101054.

PMID:
20868365
3.
4.

Functional annotation and three-dimensional structure of Dr0930 from Deinococcus radiodurans, a close relative of phosphotriesterase in the amidohydrolase superfamily.

Xiang DF, Kolb P, Fedorov AA, Meier MM, Fedorov LV, Nguyen TT, Sterner R, Almo SC, Shoichet BK, Raushel FM.

Biochemistry. 2009 Mar 17;48(10):2237-47. doi: 10.1021/bi802274f.

5.

Control of stereoselectivity in phosphotriesterase.

Hong SB, Raushel FM.

Methods Enzymol. 2004;388:256-66. No abstract available.

PMID:
15289077
6.

Evolution of an organophosphate-degrading enzyme: a comparison of natural and directed evolution.

Yang H, Carr PD, McLoughlin SY, Liu JW, Horne I, Qiu X, Jeffries CM, Russell RJ, Oakeshott JG, Ollis DL.

Protein Eng. 2003 Feb;16(2):135-45. Erratum in: Protein Eng. 2003 Mar;16(3):241.

PMID:
12676982
7.

Structural basis for natural lactonase and promiscuous phosphotriesterase activities.

Elias M, Dupuy J, Merone L, Mandrich L, Porzio E, Moniot S, Rochu D, Lecomte C, Rossi M, Masson P, Manco G, Chabriere E.

J Mol Biol. 2008 Jun 20;379(5):1017-28. doi: 10.1016/j.jmb.2008.04.022. Epub 2008 Apr 16.

PMID:
18486146
8.

Mutation of outer-shell residues modulates metal ion co-ordination strength in a metalloenzyme.

Foo JL, Jackson CJ, Carr PD, Kim HK, Schenk G, Gahan LR, Ollis DL.

Biochem J. 2010 Jul 15;429(2):313-21. doi: 10.1042/BJ20100233.

PMID:
20459397
9.

Enhanced refoldability and thermoactivity of fluorinated phosphotriesterase.

Baker PJ, Montclare JK.

Chembiochem. 2011 Aug 16;12(12):1845-8. doi: 10.1002/cbic.201100221. Epub 2011 Jun 27. No abstract available.

PMID:
21710682
10.

Enzymes for the homeland defense: optimizing phosphotriesterase for the hydrolysis of organophosphate nerve agents.

Tsai PC, Fox N, Bigley AN, Harvey SP, Barondeau DP, Raushel FM.

Biochemistry. 2012 Aug 14;51(32):6463-75. Epub 2012 Jul 31.

11.

Substitution of the catalytic metal and protein PEGylation enhances activity and stability of bacterial phosphotriesterase.

Perezgasga L, Sánchez-Sánchez L, Aguila S, Vazquez-Duhalt R.

Appl Biochem Biotechnol. 2012 Mar;166(5):1236-47. doi: 10.1007/s12010-011-9510-x. Epub 2012 Jan 17.

PMID:
22249853
12.

Functional effects of amino acid substitutions within the large binding pocket of the phosphotriesterase OpdA from Agrobacterium sp. P230.

Horne I, Qiu X, Ollis DL, Russell RJ, Oakeshott JG.

FEMS Microbiol Lett. 2006 Jun;259(2):187-94.

13.

In crystallo capture of a Michaelis complex and product-binding modes of a bacterial phosphotriesterase.

Jackson CJ, Foo JL, Kim HK, Carr PD, Liu JW, Salem G, Ollis DL.

J Mol Biol. 2008 Feb 1;375(5):1189-96. Epub 2007 Nov 1.

PMID:
18082180
14.

Enhancing the promiscuous phosphotriesterase activity of a thermostable lactonase (GkaP) for the efficient degradation of organophosphate pesticides.

Zhang Y, An J, Ye W, Yang G, Qian ZG, Chen HF, Cui L, Feng Y.

Appl Environ Microbiol. 2012 Sep;78(18):6647-55. doi: 10.1128/AEM.01122-12. Epub 2012 Jul 13.

15.

Structure-based and random mutagenesis approaches increase the organophosphate-degrading activity of a phosphotriesterase homologue from Deinococcus radiodurans.

Hawwa R, Larsen SD, Ratia K, Mesecar AD.

J Mol Biol. 2009 Oct 16;393(1):36-57. doi: 10.1016/j.jmb.2009.06.083. Epub 2009 Jul 22.

PMID:
19631223
16.

Molecular engineering of organophosphate hydrolysis activity from a weak promiscuous lactonase template.

Meier MM, Rajendran C, Malisi C, Fox NG, Xu C, Schlee S, Barondeau DP, Höcker B, Sterner R, Raushel FM.

J Am Chem Soc. 2013 Aug 7;135(31):11670-7. doi: 10.1021/ja405911h. Epub 2013 Jul 29.

17.

Switching a newly discovered lactonase into an efficient and thermostable phosphotriesterase by simple double mutations His250Ile/Ile263Trp.

Luo XJ, Kong XD, Zhao J, Chen Q, Zhou J, Xu JH.

Biotechnol Bioeng. 2014 Oct;111(10):1920-30. doi: 10.1002/bit.25272. Epub 2014 Jul 14.

PMID:
24771278
18.

A 5000-fold increase in the specificity of a bacterial phosphotriesterase for malathion through combinatorial active site mutagenesis.

Naqvi T, Warden AC, French N, Sugrue E, Carr PD, Jackson CJ, Scott C.

PLoS One. 2014 Apr 10;9(4):e94177. doi: 10.1371/journal.pone.0094177. eCollection 2014.

19.

Structure of a Novel Phosphotriesterase from Sphingobium sp. TCM1: A Familiar Binuclear Metal Center Embedded in a Seven-Bladed β-Propeller Protein Fold.

Mabanglo MF, Xiang DF, Bigley AN, Raushel FM.

Biochemistry. 2016 Jul 19;55(28):3963-74. doi: 10.1021/acs.biochem.6b00364. Epub 2016 Jul 8.

PMID:
27353520
20.

Enhanced degradation of chemical warfare agents through molecular engineering of the phosphotriesterase active site.

Hill CM, Li WS, Thoden JB, Holden HM, Raushel FM.

J Am Chem Soc. 2003 Jul 30;125(30):8990-1.

PMID:
15369336

Supplemental Content

Support Center