Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 121

1.

Trilayer graphene is a semimetal with a gate-tunable band overlap.

Craciun MF, Russo S, Yamamoto M, Oostinga JB, Morpurgo AF, Tarucha S.

Nat Nanotechnol. 2009 Jun;4(6):383-8. doi: 10.1038/nnano.2009.89. Epub 2009 Apr 26.

PMID:
19498401
2.

Gate-induced insulating state in bilayer graphene devices.

Oostinga JB, Heersche HB, Liu X, Morpurgo AF, Vandersypen LM.

Nat Mater. 2008 Feb;7(2):151-7. Epub 2007 Dec 2.

PMID:
18059274
3.

Direct Observation of a Gate Tunable Band Gap in Electrical Transport in ABC-Trilayer Graphene.

Khodkov T, Khrapach I, Craciun MF, Russo S.

Nano Lett. 2015 Jul 8;15(7):4429-33. doi: 10.1021/acs.nanolett.5b00772. Epub 2015 Jun 23.

PMID:
26079989
4.

Bi- and trilayer graphene solutions.

Shih CJ, Vijayaraghavan A, Krishnan R, Sharma R, Han JH, Ham MH, Jin Z, Lin S, Paulus GL, Reuel NF, Wang QH, Blankschtein D, Strano MS.

Nat Nanotechnol. 2011 Jun 26;6(7):439-45. doi: 10.1038/nnano.2011.94.

PMID:
21706026
5.

Electric-field dependence of the effective dielectric constant in graphene.

Santos EJ, Kaxiras E.

Nano Lett. 2013 Mar 13;13(3):898-902. doi: 10.1021/nl303611v. Epub 2013 Feb 15.

PMID:
23339637
6.

Localized magnetic states in biased bilayer and trilayer graphene.

Ding KH, Zhu ZG, Berakdar J.

J Phys Condens Matter. 2009 May 6;21(18):182002. doi: 10.1088/0953-8984/21/18/182002. Epub 2009 Mar 31.

PMID:
21825443
7.

Transport studies of dual-gated ABC and ABA trilayer graphene: band gap opening and band structure tuning in very large perpendicular electric fields.

Zou K, Zhang F, Clapp C, MacDonald AH, Zhu J.

Nano Lett. 2013 Feb 13;13(2):369-73. doi: 10.1021/nl303375a. Epub 2013 Jan 30.

PMID:
23336322
8.

Bimodal behaviour of charge carriers in graphene induced by electric double layer.

Tsai SJ, Yang RJ.

Sci Rep. 2016 Jul 28;6:30731. doi: 10.1038/srep30731.

9.

Raman spectroscopy and in situ Raman spectroelectrochemistry of isotopically engineered graphene systems.

Frank O, Dresselhaus MS, Kalbac M.

Acc Chem Res. 2015 Jan 20;48(1):111-8. doi: 10.1021/ar500384p. Epub 2015 Jan 8.

PMID:
25569178
10.

Approaching ballistic transport in suspended graphene.

Du X, Skachko I, Barker A, Andrei EY.

Nat Nanotechnol. 2008 Aug;3(8):491-5. doi: 10.1038/nnano.2008.199. Epub 2008 Jul 20.

PMID:
18685637
11.

Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature.

Xia F, Farmer DB, Lin YM, Avouris P.

Nano Lett. 2010 Feb 10;10(2):715-8. doi: 10.1021/nl9039636.

PMID:
20092332
12.

Charge transport in ion-gated mono-, bi-, and trilayer MoS2 field effect transistors.

Chu L, Schmidt H, Pu J, Wang S, Ozyilmaz B, Takenobu T, Eda G.

Sci Rep. 2014 Dec 3;4:7293. doi: 10.1038/srep07293.

13.

Modification of the structural and electrical properties of graphene layers by Pt adsorbates.

Iqbal MW, Iqbal MZ, Khan MF, Jin X, Hwang C, Eom J.

Sci Technol Adv Mater. 2014 Sep 8;15(5):055002. eCollection 2014 Oct.

14.

Electronic structure and quantum transport properties of trilayers formed from graphene and boron nitride.

Zhong X, Amorim RG, Scheicher RH, Pandey R, Karna SP.

Nanoscale. 2012 Sep 7;4(17):5490-8. doi: 10.1039/c2nr31310c. Epub 2012 Aug 2.

PMID:
22854975
15.

Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping.

Yu WJ, Liao L, Chae SH, Lee YH, Duan X.

Nano Lett. 2011 Nov 9;11(11):4759-63. doi: 10.1021/nl2025739. Epub 2011 Oct 10.

16.

Graphene/g-C3N4 bilayer: considerable band gap opening and effective band structure engineering.

Li X, Dai Y, Ma Y, Han S, Huang B.

Phys Chem Chem Phys. 2014 Mar 7;16(9):4230-5. doi: 10.1039/c3cp54592j.

PMID:
24452306
17.

High Electron Mobility in Epitaxial Trilayer Graphene on Off-axis SiC(0001).

Hajlaoui M, Sediri H, Pierucci D, Henck H, Phuphachong T, Silly MG, de Vaulchier LA, Sirotti F, Guldner Y, Belkhou R, Ouerghi A.

Sci Rep. 2016 Jan 7;6:18791. doi: 10.1038/srep18791.

18.

Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.

Heine T.

Acc Chem Res. 2015 Jan 20;48(1):65-72. doi: 10.1021/ar500277z. Epub 2014 Dec 9.

PMID:
25489917
19.

Influence of disorder on conductance in bilayer graphene under perpendicular electric field.

Miyazaki H, Tsukagoshi K, Kanda A, Otani M, Okada S.

Nano Lett. 2010 Oct 13;10(10):3888-92. doi: 10.1021/nl1015365.

PMID:
20804214
20.

High-throughput solution processing of large-scale graphene.

Tung VC, Allen MJ, Yang Y, Kaner RB.

Nat Nanotechnol. 2009 Jan;4(1):25-9. doi: 10.1038/nnano.2008.329. Epub 2008 Nov 9.

PMID:
19119278

Supplemental Content

Support Center