Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 588

1.

Carbon nanotubes as ultrahigh quality factor mechanical resonators.

Hüttel AK, Steele GA, Witkamp B, Poot M, Kouwenhoven LP, van der Zant HS.

Nano Lett. 2009 Jul;9(7):2547-52. doi: 10.1021/nl900612h.

PMID:
19492820
2.
3.

A high quality factor carbon nanotube mechanical resonator at 39 GHz.

Laird EA, Pei F, Tang W, Steele GA, Kouwenhoven LP.

Nano Lett. 2012 Jan 11;12(1):193-7. doi: 10.1021/nl203279v. Epub 2011 Dec 2.

PMID:
22111547
4.

Mobility of carbon nanotubes in high electric fields.

Koratkar N, Modi A, Kim J, Wei BQ, Vajtai R, Talapatra S, Ajayan PM.

J Nanosci Nanotechnol. 2004 Jan-Feb;4(1-2):69-71.

PMID:
15112543
5.

Vibrational characteristics of carbon nanotubes as nanomechanical resonators.

Kwon YW, Manthena C, Oh JJ, Srivastava D.

J Nanosci Nanotechnol. 2005 May;5(5):703-12.

PMID:
16010925
6.

Bending-mode vibration of a suspended nanotube resonator.

Witkamp B, Poot M, van der Zant HS.

Nano Lett. 2006 Dec;6(12):2904-8.

PMID:
17163728
7.

Strong coupling between single-electron tunneling and nanomechanical motion.

Steele GA, Hüttel AK, Witkamp B, Poot M, Meerwaldt HB, Kouwenhoven LP, van der Zant HS.

Science. 2009 Aug 28;325(5944):1103-7. doi: 10.1126/science.1176076. Epub 2009 Jul 23.

8.

Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene.

Eichler A, Moser J, Chaste J, Zdrojek M, Wilson-Rae I, Bachtold A.

Nat Nanotechnol. 2011 May 15;6(6):339-42. doi: 10.1038/nnano.2011.71.

PMID:
21572430
9.

Ballistic conduction in multiwalled carbon nanotubes.

Berger C, Poncharal P, Yi Y, de Heer W.

J Nanosci Nanotechnol. 2003 Feb-Apr;3(1-2):171-7.

PMID:
12908247
10.

Electromechanical instability in suspended carbon nanotubes.

Jonsson LM, Gorelik LY, Shekhter RI, Jonson M.

Nano Lett. 2005 Jun;5(6):1165-9.

PMID:
15943462
11.

Electron transport in very clean, as-grown suspended carbon nanotubes.

Cao J, Wang Q, Dai H.

Nat Mater. 2005 Oct;4(10):745-9. Epub 2005 Sep 4.

PMID:
16142240
12.

Digital and FM demodulation of a doubly clamped single-walled carbon-nanotube oscillator: towards a nanotube cell phone.

Gouttenoire V, Barois T, Perisanu S, Leclercq JL, Purcell ST, Vincent P, Ayari A.

Small. 2010 May 7;6(9):1060-5. doi: 10.1002/smll.200901984.

PMID:
20394067
13.

Capacitive spring softening in single-walled carbon nanotube nanoelectromechanical resonators.

Wu CC, Zhong Z.

Nano Lett. 2011 Apr 13;11(4):1448-51. doi: 10.1021/nl1039549. Epub 2011 Mar 23.

PMID:
21428322
14.

Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime.

Gómez-Navarro C, de Pablo PJ, Gómez-Herrero J, Biel B, Garcia-Vidal FJ, Rubio A, Flores F.

Nat Mater. 2005 Jul;4(7):534-9. Epub 2005 Jun 19.

15.

High frequency scanning gate microscopy and local memory effect of carbon nanotube transistors.

Staii C, Johnson AT Jr, Shao R, Bonnell DA.

Nano Lett. 2005 May;5(5):893-6.

PMID:
15884889
16.

Controlling nanotube chirality and crystallinity by doping.

Terrones M.

Small. 2005 Nov;1(11):1032-4. No abstract available.

PMID:
17193389
17.

Flow-induced planar assembly of parallel carbon nanotubes and crossed nanotube junctions.

Cao A, Talapatra S, Vajtai R, Ajayan PM.

J Nanosci Nanotechnol. 2005 Jul;5(7):1177-80.

PMID:
16108446
18.

In situ raman measurements of suspended individual single-walled carbon nanotubes under strain.

Lee SW, Jeong GH, Campbell EE.

Nano Lett. 2007 Sep;7(9):2590-5. Epub 2007 Aug 25.

PMID:
17718583
19.

Parametric amplification and self-oscillation in a nanotube mechanical resonator.

Eichler A, Chaste J, Moser J, Bachtold A.

Nano Lett. 2011 Jul 13;11(7):2699-703. doi: 10.1021/nl200950d. Epub 2011 May 26.

PMID:
21615135
20.

Modeling a suspended nanotube oscillator.

Ustünel H, Roundy D, Arias TA.

Nano Lett. 2005 Mar;5(3):523-6.

PMID:
15755107

Supplemental Content

Support Center