Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 169

1.

Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser.

Fernández E, Unterhuber A, Prieto P, Hermann B, Drexler W, Artal P.

Opt Express. 2005 Jan 24;13(2):400-9.

PMID:
19488366
2.

Aberrations of the human eye in visible and near infrared illumination.

Llorente L, Diaz-Santana L, Lara-Saucedo D, Marcos S.

Optom Vis Sci. 2003 Jan;80(1):26-35.

PMID:
12553541
3.

Chromatic aberration correction of the human eye for retinal imaging in the near infrared.

Fernández EJ, Unterhuber A, Povazay B, Hermann B, Artal P, Drexler W.

Opt Express. 2006 Jun 26;14(13):6213-25.

PMID:
19516794
4.

Optical aberrations in the mouse eye.

de la Cera EG, Rodríguez G, Llorente L, Schaeffel F, Marcos S.

Vision Res. 2006 Aug;46(16):2546-53. Epub 2006 Mar 3.

5.

A wavelength tunable wavefront sensor for the human eye.

Manzanera S, Canovas C, Prieto PM, Artal P.

Opt Express. 2008 May 26;16(11):7748-55.

PMID:
18545485
6.

Statistical variation of aberration structure and image quality in a normal population of healthy eyes.

Thibos LN, Hong X, Bradley A, Cheng X.

J Opt Soc Am A Opt Image Sci Vis. 2002 Dec;19(12):2329-48.

PMID:
12469728
7.

Ocular aberrations up to the infrared range: from 632.8 to 1070 nm.

Fernández EJ, Artal P.

Opt Express. 2008 Dec 22;16(26):21199-208.

PMID:
19104549
8.

Monochromatic aberrations provide an odd-error cue to focus direction.

Wilson BJ, Decker KE, Roorda A.

J Opt Soc Am A Opt Image Sci Vis. 2002 May;19(5):833-9.

PMID:
11999959
9.

Closed-loop adaptive optics in the human eye.

Fernández EJ, Iglesias I, Artal P.

Opt Lett. 2001 May 15;26(10):746-8.

PMID:
18040440
10.

Dynamics of the eye's wave aberration.

Hofer H, Artal P, Singer B, Aragón JL, Williams DR.

J Opt Soc Am A Opt Image Sci Vis. 2001 Mar;18(3):497-506.

PMID:
11265680
11.

Ocular wave-front aberration statistics in a normal young population.

Castejón-Mochón JF, López-Gil N, Benito A, Artal P.

Vision Res. 2002 Jun;42(13):1611-7.

13.

Laser Ray Tracing versus Hartmann-Shack sensor for measuring optical aberrations in the human eye.

Moreno-Barriuso E, Navarro R.

J Opt Soc Am A Opt Image Sci Vis. 2000 Jun;17(6):974-85.

PMID:
10850467
14.

Monochromatic aberrations of the human eye in a large population.

Porter J, Guirao A, Cox IG, Williams DR.

J Opt Soc Am A Opt Image Sci Vis. 2001 Aug;18(8):1793-803.

PMID:
11488483
15.

Contribution of the cornea and internal surfaces to the change of ocular aberrations with age.

Artal P, Berrio E, Guirao A, Piers P.

J Opt Soc Am A Opt Image Sci Vis. 2002 Jan;19(1):137-43.

PMID:
11778716
16.

Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument.

Díaz-Doutón F, Benito A, Pujol J, Arjona M, Güell JL, Artal P.

Invest Ophthalmol Vis Sci. 2006 Apr;47(4):1710-6.

PMID:
16565413
17.

Statistical description of wave-front aberration in the human eye.

Cagigal MP, Canales VF, Castejón-Mochón JF, Prieto PM, López-Gil N, Artal P.

Opt Lett. 2002 Jan 1;27(1):37-9.

PMID:
18007708
18.

Adaptive-optics ultrahigh-resolution optical coherence tomography.

Hermann B, Fernández EJ, Unterhuber A, Sattmann H, Fercher AF, Drexler W, Prieto PM, Artal P.

Opt Lett. 2004 Sep 15;29(18):2142-4.

PMID:
15460883
19.
20.

Relationship between refractive error and monochromatic aberrations of the eye.

Cheng X, Bradley A, Hong X, Thibos LN.

Optom Vis Sci. 2003 Jan;80(1):43-9.

PMID:
12553543

Supplemental Content

Support Center