Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 123

1.

Reducing inter-subject anatomical variation: effect of normalization method on sensitivity of functional magnetic resonance imaging data analysis in auditory cortex and the superior temporal region.

Tahmasebi AM, Abolmaesumi P, Zheng ZZ, Munhall KG, Johnsrude IS.

Neuroimage. 2009 Oct 1;47(4):1522-31. doi: 10.1016/j.neuroimage.2009.05.047. Epub 2009 May 27.

2.

Spatial resolution of fMRI in the human parasylvian cortex: comparison of somatosensory and auditory activation.

Ozcan M, Baumgärtner U, Vucurevic G, Stoeter P, Treede RD.

Neuroimage. 2005 Apr 15;25(3):877-87.

PMID:
15808988
3.

From spatial regularization to anatomical priors in fMRI analysis.

Ou W, Golland P.

Inf Process Med Imaging. 2005;19:88-100.

4.

A quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobe.

Yassa MA, Stark CE.

Neuroimage. 2009 Jan 15;44(2):319-27. doi: 10.1016/j.neuroimage.2008.09.016. Epub 2008 Sep 27.

PMID:
18929669
5.

Variable precision registration via wavelets: optimal spatial scales for inter-subject registration of functional MRI.

Suckling J, Long C, Triantafyllou C, Brammer M, Bullmore E.

Neuroimage. 2006 May 15;31(1):197-208. Epub 2006 Jan 20.

PMID:
16431137
6.

Is the link between anatomical structure and function equally strong at all cognitive levels of processing?

Tahmasebi AM, Davis MH, Wild CJ, Rodd JM, Hakyemez H, Abolmaesumi P, Johnsrude IS.

Cereb Cortex. 2012 Jul;22(7):1593-603. doi: 10.1093/cercor/bhr205. Epub 2011 Sep 5.

PMID:
21893681
7.

Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra provides reduced effect of scanner for cortex volumetry with atlas-based method in healthy subjects.

Goto M, Abe O, Aoki S, Hayashi N, Miyati T, Takao H, Iwatsubo T, Yamashita F, Matsuda H, Mori H, Kunimatsu A, Ino K, Yano K, Ohtomo K; Japanese Alzheimer's Disease Neuroimaging Initiative.

Neuroradiology. 2013 Jul;55(7):869-75. doi: 10.1007/s00234-013-1193-2. Epub 2013 Apr 26.

PMID:
23619702
8.

A validation framework for probabilistic maps using Heschl's gyrus as a model.

Tahmasebi AM, Abolmaesumi P, Wild C, Johnsrude IS.

Neuroimage. 2010 Apr 1;50(2):532-44. doi: 10.1016/j.neuroimage.2009.12.074. Epub 2009 Dec 28.

PMID:
20036334
9.

Improving the resolution of functional brain imaging: analyzing functional data in anatomical space.

Kang X, Yund EW, Herron TJ, Woods DL.

Magn Reson Imaging. 2007 Sep;25(7):1070-8. Epub 2007 Jan 26.

PMID:
17707169
10.

[Application of simultaneous auditory evoked potentials and functional magnetic resonance recordings for examination of central auditory system--preliminary results].

Milner R, Rusiniak M, Wolak T, Piatkowska-Janko E, Naumczyk P, Bogorodzki P, Senderski A, Ganc M, Skarzyński H.

Otolaryngol Pol. 2011 May-Jun;65(3):171-83. doi: 10.1016/S0030-6657(11)70671-0. Polish.

PMID:
21916216
11.

Groupwise spatial normalization of fMRI data based on multi-range functional connectivity patterns.

Jiang D, Du Y, Cheng H, Jiang T, Fan Y.

Neuroimage. 2013 Nov 15;82:355-72. doi: 10.1016/j.neuroimage.2013.05.093. Epub 2013 May 28.

PMID:
23727315
12.

False positive control of activated voxels in single fMRI analysis using bootstrap resampling in comparison to spatial smoothing.

Darki F, Oghabian MA.

Magn Reson Imaging. 2013 Oct;31(8):1331-7. doi: 10.1016/j.mri.2013.03.009. Epub 2013 May 10.

PMID:
23664823
13.

Customised cytoarchitectonic probability maps using deformable registration: primary auditory cortex.

Bailey L, Abolmaesumi P, Tam J, Morosan P, Cusack R, Amunts K, Johnsrude I.

Med Image Comput Comput Assist Interv. 2007;10(Pt 2):760-8.

PMID:
18044637
14.

Optimizing the imaging of the monkey auditory cortex: sparse vs. continuous fMRI.

Petkov CI, Kayser C, Augath M, Logothetis NK.

Magn Reson Imaging. 2009 Oct;27(8):1065-73. doi: 10.1016/j.mri.2009.01.018. Epub 2009 Mar 9.

PMID:
19269764
15.

Less noise, more activation: Multiband acquisition schemes for auditory functional MRI.

De Martino F, Moerel M, Ugurbil K, Formisano E, Yacoub E.

Magn Reson Med. 2015 Aug;74(2):462-7. doi: 10.1002/mrm.25408. Epub 2014 Aug 8.

16.

Dealing with the shortcomings of spatial normalization: multi-subject parcellation of fMRI datasets.

Thirion B, Flandin G, Pinel P, Roche A, Ciuciu P, Poline JB.

Hum Brain Mapp. 2006 Aug;27(8):678-93.

PMID:
16281292
18.

fMRI of the brainstem using dual-echo EPI.

Beissner F, Deichmann R, Baudrexel S.

Neuroimage. 2011 Apr 15;55(4):1593-9. doi: 10.1016/j.neuroimage.2011.01.042. Epub 2011 Jan 20.

PMID:
21256220
19.

A study-specific fMRI normalization approach that operates directly on high resolution functional EPI data at 7 Tesla.

Grabner G, Poser BA, Fujimoto K, Polimeni JR, Wald LL, Trattnig S, Toni I, Barth M.

Neuroimage. 2014 Oct 15;100:710-4. doi: 10.1016/j.neuroimage.2014.06.045. Epub 2014 Jun 25.

20.

Spectro-temporal modulation transfer function of single voxels in the human auditory cortex measured with high-resolution fMRI.

Schönwiesner M, Zatorre RJ.

Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14611-6. doi: 10.1073/pnas.0907682106. Epub 2009 Aug 10.

Supplemental Content

Support Center