Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Gene dysregulation in Huntington's disease: REST, microRNAs and beyond.

Johnson R, Buckley NJ.

Neuromolecular Med. 2009;11(3):183-99. doi: 10.1007/s12017-009-8063-4. Epub 2009 May 21.

PMID:
19458943
2.

Transcriptional dysregulation of coding and non-coding genes in cellular models of Huntington's disease.

Bithell A, Johnson R, Buckley NJ.

Biochem Soc Trans. 2009 Dec;37(Pt 6):1270-5. doi: 10.1042/BST0371270. Review.

PMID:
19909260
3.

Dysregulation of REST-regulated coding and non-coding RNAs in a cellular model of Huntington's disease.

Soldati C, Bithell A, Johnston C, Wong KY, Stanton LW, Buckley NJ.

J Neurochem. 2013 Feb;124(3):418-30. doi: 10.1111/jnc.12090.

4.

Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington's disease.

Zuccato C, Belyaev N, Conforti P, Ooi L, Tartari M, Papadimou E, MacDonald M, Fossale E, Zeitlin S, Buckley N, Cattaneo E.

J Neurosci. 2007 Jun 27;27(26):6972-83.

5.

A microRNA-based gene dysregulation pathway in Huntington's disease.

Johnson R, Zuccato C, Belyaev ND, Guest DJ, Cattaneo E, Buckley NJ.

Neurobiol Dis. 2008 Mar;29(3):438-45. Epub 2007 Nov 13.

PMID:
18082412
6.

Rescue of gene expression by modified REST decoy oligonucleotides in a cellular model of Huntington's disease.

Soldati C, Bithell A, Conforti P, Cattaneo E, Buckley NJ.

J Neurochem. 2011 Feb;116(3):415-25. doi: 10.1111/j.1471-4159.2010.07122.x. Epub 2010 Dec 13.

7.

Binding of the repressor complex REST-mSIN3b by small molecules restores neuronal gene transcription in Huntington's disease models.

Conforti P, Zuccato C, Gaudenzi G, Ieraci A, Camnasio S, Buckley NJ, Mutti C, Cotelli F, Contini A, Cattaneo E.

J Neurochem. 2013 Oct;127(1):22-35. doi: 10.1111/jnc.12348. Epub 2013 Jul 19.

8.

The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease.

Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL.

J Neurosci. 2008 Dec 31;28(53):14341-6. doi: 10.1523/JNEUROSCI.2390-08.2008.

9.

Transgenic mice expressing mutated full-length HD cDNA: a paradigm for locomotor changes and selective neuronal loss in Huntington's disease.

Reddy PH, Charles V, Williams M, Miller G, Whetsell WO Jr, Tagle DA.

Philos Trans R Soc Lond B Biol Sci. 1999 Jun 29;354(1386):1035-45.

10.

Antisense oligonucleotide-mediated correction of transcriptional dysregulation is correlated with behavioral benefits in the YAC128 mouse model of Huntington's disease.

Stanek LM, Yang W, Angus S, Sardi PS, Hayden MR, Hung GH, Bennett CF, Cheng SH, Shihabuddin LS.

J Huntingtons Dis. 2013;2(2):217-28. doi: 10.3233/JHD-130057.

PMID:
25063516
11.

PRMT5- mediated symmetric arginine dimethylation is attenuated by mutant huntingtin and is impaired in Huntington's disease (HD).

Ratovitski T, Arbez N, Stewart JC, Chighladze E, Ross CA.

Cell Cycle. 2015;14(11):1716-29. doi: 10.1080/15384101.2015.1033595.

12.

Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington's disease mice.

Boudreau RL, McBride JL, Martins I, Shen S, Xing Y, Carter BJ, Davidson BL.

Mol Ther. 2009 Jun;17(6):1053-63. doi: 10.1038/mt.2009.17. Epub 2009 Feb 24.

13.

Interrogation of brain miRNA and mRNA expression profiles reveals a molecular regulatory network that is perturbed by mutant huntingtin.

Jin J, Cheng Y, Zhang Y, Wood W, Peng Q, Hutchison E, Mattson MP, Becker KG, Duan W.

J Neurochem. 2012 Nov;123(4):477-90. doi: 10.1111/j.1471-4159.2012.07925.x. Epub 2012 Sep 28.

14.

MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington's disease-related mechanisms.

Jovicic A, Zaldivar Jolissaint JF, Moser R, Silva Santos Mde F, Luthi-Carter R.

PLoS One. 2013;8(1):e54222. doi: 10.1371/journal.pone.0054222. Epub 2013 Jan 17.

15.

Functional roles for the striatal-enriched transcription factor, Bcl11b, in the control of striatal gene expression and transcriptional dysregulation in Huntington's disease.

Desplats PA, Lambert JR, Thomas EA.

Neurobiol Dis. 2008 Sep;31(3):298-308. doi: 10.1016/j.nbd.2008.05.005. Epub 2008 May 22.

16.

microRNA-128a dysregulation in transgenic Huntington's disease monkeys.

Kocerha J, Xu Y, Prucha MS, Zhao D, Chan AW.

Mol Brain. 2014 Jun 13;7:46. doi: 10.1186/1756-6606-7-46.

17.

Mitogen- and stress-activated protein kinase-1 deficiency is involved in expanded-huntingtin-induced transcriptional dysregulation and striatal death.

Roze E, Betuing S, Deyts C, Marcon E, Brami-Cherrier K, Pagès C, Humbert S, Mérienne K, Caboche J.

FASEB J. 2008 Apr;22(4):1083-93. Epub 2007 Nov 20.

PMID:
18029446
18.

Towards a transgenic model of Huntington's disease in a non-human primate.

Yang SH, Cheng PH, Banta H, Piotrowska-Nitsche K, Yang JJ, Cheng EC, Snyder B, Larkin K, Liu J, Orkin J, Fang ZH, Smith Y, Bachevalier J, Zola SM, Li SH, Li XJ, Chan AW.

Nature. 2008 Jun 12;453(7197):921-4. doi: 10.1038/nature06975. Epub 2008 May 18.

19.

Repressor element-1 silencing transcription factor (REST) is present in human control and Huntington's disease neurones.

Schiffer D, Caldera V, Mellai M, Conforti P, Cattaneo E, Zuccato C.

Neuropathol Appl Neurobiol. 2014 Dec;40(7):899-910. doi: 10.1111/nan.12137.

PMID:
24634989
20.

Transcriptional activation of REST by Sp1 in Huntington's disease models.

Ravache M, Weber C, Mérienne K, Trottier Y.

PLoS One. 2010 Dec 14;5(12):e14311. doi: 10.1371/journal.pone.0014311.

Supplemental Content

Support Center