Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 331

1.

The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy.

Hou CH, Hou SM, Hsueh YS, Lin J, Wu HC, Lin FH.

Biomaterials. 2009 Aug;30(23-24):3956-60. doi: 10.1016/j.biomaterials.2009.04.020. Epub 2009 May 14.

PMID:
19446329
2.

Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.

Li FR, Yan WH, Guo YH, Qi H, Zhou HX.

Int J Hyperthermia. 2009 Aug;25(5):383-91. doi: 10.1080/02656730902834949.

PMID:
19391033
3.

Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique.

Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldöfner N, Scholz R, Deger S, Wust P, Loening SA, Jordan A.

Int J Hyperthermia. 2005 Nov;21(7):637-47.

PMID:
16304715
4.

Clinical applications of magnetic nanoparticles for hyperthermia.

Thiesen B, Jordan A.

Int J Hyperthermia. 2008 Sep;24(6):467-74. doi: 10.1080/02656730802104757.

PMID:
18608593
5.

Magnetic fluid hyperthermia (MFH)reduces prostate cancer growth in the orthotopic Dunning R3327 rat model.

Johannsen M, Thiesen B, Jordan A, Taymoorian K, Gneveckow U, Waldöfner N, Scholz R, Koch M, Lein M, Jung K, Loening SA.

Prostate. 2005 Aug 1;64(3):283-92.

PMID:
15726645
6.

Using thermal energy produced by irradiation of Mn-Zn ferrite magnetic nanoparticles (MZF-NPs) for heat-inducible gene expression.

Tang QS, Zhang DS, Cong XM, Wan ML, Jin LQ.

Biomaterials. 2008 Jun;29(17):2673-9. doi: 10.1016/j.biomaterials.2008.01.038. Epub 2008 Apr 8.

PMID:
18396332
7.

Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer.

Ivkov R, DeNardo SJ, Daum W, Foreman AR, Goldstein RC, Nemkov VS, DeNardo GL.

Clin Cancer Res. 2005 Oct 1;11(19 Pt 2):7093s-7103s.

8.

[Magnetically based enhancement of nanoparticle uptake in tumor cells: combination of magnetically induced cell labeling and magnetic heating].

Kettering M, Winter J, Zeisberger M, Alexiou C, Bremer-Streck S, Bergemann C, Kaiser WA, Hilger I.

Rofo. 2006 Dec;178(12):1255-60. German.

PMID:
17136650
9.

The in vivo performance of magnetic particle-loaded injectable, in situ gelling, carriers for the delivery of local hyperthermia.

Le Renard PE, Jordan O, Faes A, Petri-Fink A, Hofmann H, Rüfenacht D, Bosman F, Buchegger F, Doelker E.

Biomaterials. 2010 Feb;31(4):691-705. doi: 10.1016/j.biomaterials.2009.09.091. Epub 2009 Oct 29.

PMID:
19878991
10.

Cancer hyperthermia using magnetic nanoparticles.

Kobayashi T.

Biotechnol J. 2011 Nov;6(11):1342-7. doi: 10.1002/biot.201100045. Epub 2011 Aug 26. Review.

PMID:
22069094
11.

In vitro analysis of cisplatin functionalized magnetic nanoparticles in combined cancer chemotherapy and electromagnetic hyperthermia.

Babincov M, Altanerov V, Altaner C, Bergemann C, Babinec P.

IEEE Trans Nanobioscience. 2008 Mar;7(1):15-9. doi: 10.1109/TNB.2008.2000145.

PMID:
18334449
12.

Applications of magnetic nanoparticles in medicine: magnetic fluid hyperthermia.

Latorre M, Rinaldi C.

P R Health Sci J. 2009 Sep;28(3):227-38. Review.

PMID:
19715115
13.

Heat immunotherapy using magnetic nanoparticles and dendritic cells for T-lymphoma.

Tanaka K, Ito A, Kobayashi T, Kawamura T, Shimada S, Matsumoto K, Saida T, Honda H.

J Biosci Bioeng. 2005 Jul;100(1):112-5.

PMID:
16233860
14.

Numerical study of temperature distribution in a spherical tissue in magnetic fluid hyperthermia using lattice Boltzmann method.

Lahonian M, Golneshan AA.

IEEE Trans Nanobioscience. 2011 Dec;10(4):262-8. doi: 10.1109/TNB.2011.2177100.

PMID:
22271797
15.

Tumour cell toxicity of intracellular hyperthermia mediated by magnetic nanoparticles.

Wilhelm C, Fortin JP, Gazeau F.

J Nanosci Nanotechnol. 2007 Aug;7(8):2933-7.

PMID:
17685322
16.

Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy.

Purushotham S, Chang PE, Rumpel H, Kee IH, Ng RT, Chow PK, Tan CK, Ramanujan RV.

Nanotechnology. 2009 Jul 29;20(30):305101. doi: 10.1088/0957-4484/20/30/305101. Epub 2009 Jul 7.

PMID:
19581698
17.

Effect of hydroxyapatite nanoparticles on the ultrastructure and function of hepatocellular carcinoma cells in vitro.

Yin MZ, Han YC, Bauer IW, Chen P, Li SP.

Biomed Mater. 2006 Mar;1(1):38-41. doi: 10.1088/1748-6041/1/1/006. Epub 2006 Mar 15.

PMID:
18458384
18.

Ag-doped manganite nanoparticles: new materials for temperature-controlled medical hyperthermia.

Melnikov OV, Gorbenko OY, Markelova MN, Kaul AR, Atsarkin VA, Demidov VV, Soto C, Roy EJ, Odintsov BM.

J Biomed Mater Res A. 2009 Dec 15;91(4):1048-55. doi: 10.1002/jbm.a.32177.

PMID:
19127514
19.

A frequency-adjustable electromagnet for hyperthermia measurements on magnetic nanoparticles.

Lacroix LM, Carrey J, Respaud M.

Rev Sci Instrum. 2008 Sep;79(9):093909. doi: 10.1063/1.2972172.

PMID:
19044430
20.

Preparation of magnetic iron oxide nanoparticles for hyperthermia of cancer in a FeCl₂-NaNO₃-NaOH aqueous system.

Li Z, Kawashita M, Araki N, Mitsumori M, Hiraoka M, Doi M.

J Biomater Appl. 2011 Mar;25(7):643-61. doi: 10.1177/0885328209351136. Epub 2010 Mar 5.

PMID:
20207773

Supplemental Content

Support Center