Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 111

1.

Met amplification and tumor progression in Cdkn2a-deficient melanocytes.

Vanbrocklin MW, Robinson JP, Whitwam T, Guilbeault AR, Koeman J, Swiatek PJ, Vande Woude GF, Khoury JD, Holmen SL.

Pigment Cell Melanoma Res. 2009 Aug;22(4):454-60. doi: 10.1111/j.1755-148X.2009.00576.x. Epub 2009 Apr 29.

2.

Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice.

Goel VK, Ibrahim N, Jiang G, Singhal M, Fee S, Flotte T, Westmoreland S, Haluska FS, Hinds PW, Haluska FG.

Oncogene. 2009 Jun 11;28(23):2289-98. doi: 10.1038/onc.2009.95. Epub 2009 Apr 27.

3.

Expression and localization of mutant p16 proteins in melanocytic lesions from familial melanoma patients.

Ghiorzo P, Villaggio B, Sementa AR, Hansson J, Platz A, Nicoló G, Spina B, Canepa M, Palmer JM, Hayward NK, Bianchi-Scarrà G.

Hum Pathol. 2004 Jan;35(1):25-33.

PMID:
14745721
4.

p16/cyclin-dependent kinase inhibitor 2A deficiency in human melanocyte senescence, apoptosis, and immortalization: possible implications for melanoma progression.

Sviderskaya EV, Gray-Schopfer VC, Hill SP, Smit NP, Evans-Whipp TJ, Bond J, Hill L, Bataille V, Peters G, Kipling D, Wynford-Thomas D, Bennett DC.

J Natl Cancer Inst. 2003 May 21;95(10):723-32.

PMID:
12759390
5.

The fibroblast growth factor-2 is not essential for melanoma formation in a transgenic mouse model.

Ackermann J, Beermann F.

Pigment Cell Res. 2005 Aug;18(4):315-9.

PMID:
16029424
6.
7.

Loss of expression of the p16/cyclin-dependent kinase inhibitor 2 tumor suppressor gene in melanocytic lesions correlates with invasive stage of tumor progression.

Reed JA, Loganzo F Jr, Shea CR, Walker GJ, Flores JF, Glendening JM, Bogdany JK, Shiel MJ, Haluska FG, Fountain JW, et al.

Cancer Res. 1995 Jul 1;55(13):2713-8.

8.

c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype.

Otsuka T, Takayama H, Sharp R, Celli G, LaRochelle WJ, Bottaro DP, Ellmore N, Vieira W, Owens JW, Anver M, Merlino G.

Cancer Res. 1998 Nov 15;58(22):5157-67.

9.

Expression of the tumor suppressor gene product p16INK4 in benign and malignant melanocytic lesions.

Keller-Melchior R, Schmidt R, Piepkorn M.

J Invest Dermatol. 1998 Jun;110(6):932-8.

10.
11.

Reduced p16 and increased cyclin D1 and pRb expression are correlated with progression in cutaneous melanocytic tumors.

Karim RZ, Li W, Sanki A, Colman MH, Yang YH, Thompson JF, Scolyer RA.

Int J Surg Pathol. 2009 Oct;17(5):361-7. doi: 10.1177/1066896909336177. Epub 2009 Aug 10.

PMID:
19666944
12.

The AP-1 transcription factor FOSL1 causes melanocyte reprogramming and transformation.

Maurus K, Hufnagel A, Geiger F, Graf S, Berking C, Heinemann A, Paschen A, Kneitz S, Stigloher C, Geissinger E, Otto C, Bosserhoff A, Schartl M, Meierjohann S.

Oncogene. 2017 Sep 7;36(36):5110-5121. doi: 10.1038/onc.2017.135. Epub 2017 May 8.

PMID:
28481878
13.

Molecular regulation of melanocyte senescence.

Bennett DC, Medrano EE.

Pigment Cell Res. 2002 Aug;15(4):242-50. Review.

PMID:
12100489
14.

Oxidative stress in melanocyte senescence and melanoma transformation.

Meierjohann S.

Eur J Cell Biol. 2014 Jan-Feb;93(1-2):36-41. doi: 10.1016/j.ejcb.2013.11.005. Epub 2013 Nov 23. Review.

PMID:
24342719
15.

Overexpression of Lerk-5/Eplg5 messenger RNA: a novel marker for increased tumorigenicity and metastatic potential in human malignant melanomas.

Vogt T, Stolz W, Welsh J, Jung B, Kerbel RS, Kobayashi H, Landthaler M, McClelland M.

Clin Cancer Res. 1998 Mar;4(3):791-7.

16.

Molecular pathogenesis of cutaneous melanocytic neoplasms.

Ibrahim N, Haluska FG.

Annu Rev Pathol. 2009;4:551-79. doi: 10.1146/annurev.pathol.3.121806.151541. Review.

PMID:
19400696
17.

Role of key-regulator genes in melanoma susceptibility and pathogenesis among patients from South Italy.

Casula M, Muggiano A, Cossu A, Budroni M, Caracò C, Ascierto PA, Pagani E, Stanganelli I, Canzanella S, Sini M, Palomba G; Italian Melanoma Intergroup (IMI), Palmieri G.

BMC Cancer. 2009 Oct 3;9:352. doi: 10.1186/1471-2407-9-352.

18.

mTORC1 activation blocks BrafV600E-induced growth arrest but is insufficient for melanoma formation.

Damsky W, Micevic G, Meeth K, Muthusamy V, Curley DP, Santhanakrishnan M, Erdelyi I, Platt JT, Huang L, Theodosakis N, Zaidi MR, Tighe S, Davies MA, Dankort D, McMahon M, Merlino G, Bardeesy N, Bosenberg M.

Cancer Cell. 2015 Jan 12;27(1):41-56. doi: 10.1016/j.ccell.2014.11.014.

19.

Melanoma transition is frequently accompanied by a loss of cytoglobin expression in melanocytes: a novel expression site of cytoglobin.

Fujita Y, Koinuma S, De Velasco MA, Bolz J, Togashi Y, Terashima M, Hayashi H, Matsuo T, Nishio K.

PLoS One. 2014 Apr 10;9(4):e94772. doi: 10.1371/journal.pone.0094772. eCollection 2014.

20.

Mining gene expression signature for the detection of pre-malignant melanocytes and early melanomas with risk for metastasis.

de Souza CF, Xander P, Monteiro AC, Silva AG, da Silva DC, Mai S, Bernardo V, Lopes JD, Jasiulionis MG.

PLoS One. 2012;7(9):e44800. doi: 10.1371/journal.pone.0044800. Epub 2012 Sep 11.

Supplemental Content

Support Center