Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 67

1.

The mismatch repair and base excision repair pathways: an opportunity for individualized (personalized) sensitization of cancer therapy.

Collins SP, Dritschilo A.

Cancer Biol Ther. 2009 Jun;8(12):1164-6. Epub 2009 Jun 16. No abstract available.

2.

Modulation of the activity of methyl binding domain protein 4 (MBD4/MED1) while processing iododeoxyuridine generated DNA mispairs.

Aziz MA, Schupp JE, Kinsella TJ.

Cancer Biol Ther. 2009 Jun;8(12):1156-63. Epub 2009 Jun 25.

PMID:
19395862
3.

The base excision repair enzyme MED1 mediates DNA damage response to antitumor drugs and is associated with mismatch repair system integrity.

Cortellino S, Turner D, Masciullo V, Schepis F, Albino D, Daniel R, Skalka AM, Meropol NJ, Alberti C, Larue L, Bellacosa A.

Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):15071-6. Epub 2003 Nov 12.

4.

Envisioning the molecular choreography of DNA base excision repair.

Parikh SS, Mol CD, Hosfield DJ, Tainer JA.

Curr Opin Struct Biol. 1999 Feb;9(1):37-47. Review.

PMID:
10047578
5.

Biphasic kinetics of the human DNA repair protein MED1 (MBD4), a mismatch-specific DNA N-glycosylase.

Petronzelli F, Riccio A, Markham GD, Seeholzer SH, Stoerker J, Genuardi M, Yeung AT, Matsumoto Y, Bellacosa A.

J Biol Chem. 2000 Oct 20;275(42):32422-9.

6.

New recognition mode for a TG mismatch: the atomic structure of a very short patch repair endonuclease-DNA complex.

Tsutakawa SE, Morikawa K.

Cold Spring Harb Symp Quant Biol. 2000;65:233-9. Review. No abstract available.

PMID:
12760037
7.

The DNA N-glycosylase MED1 exhibits preference for halogenated pyrimidines and is involved in the cytotoxicity of 5-iododeoxyuridine.

Turner DP, Cortellino S, Schupp JE, Caretti E, Loh T, Kinsella TJ, Bellacosa A.

Cancer Res. 2006 Aug 1;66(15):7686-93.

8.

Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases.

Mol CD, Arvai AS, Begley TJ, Cunningham RP, Tainer JA.

J Mol Biol. 2002 Jan 18;315(3):373-84.

PMID:
11786018
9.

Uracil in DNA--occurrence, consequences and repair.

Krokan HE, Drabløs F, Slupphaug G.

Oncogene. 2002 Dec 16;21(58):8935-48. Review.

10.

Crystal structure of a thwarted mismatch glycosylase DNA repair complex.

Barrett TE, Schärer OD, Savva R, Brown T, Jiricny J, Verdine GL, Pearl LH.

EMBO J. 1999 Dec 1;18(23):6599-609.

11.

Human thymine DNA glycosylase binds to apurinic sites in DNA but is displaced by human apurinic endonuclease 1.

Waters TR, Gallinari P, Jiricny J, Swann PF.

J Biol Chem. 1999 Jan 1;274(1):67-74.

12.

Investigation of the substrate spectrum of the human mismatch-specific DNA N-glycosylase MED1 (MBD4): fundamental role of the catalytic domain.

Petronzelli F, Riccio A, Markham GD, Seeholzer SH, Genuardi M, Karbowski M, Yeung AT, Matsumoto Y, Bellacosa A.

J Cell Physiol. 2000 Dec;185(3):473-80.

PMID:
11056019
13.
14.

A convenient spectrometric assay system for intracellular quantitative measurement of DNA glycosylase activity.

Li S, Huang Q, Wang L, Lan Y, Zhang X, Yang B, Du P, Hua Z.

Acta Biochim Biophys Sin (Shanghai). 2010 Jun 15;42(6):381-7.

15.

Thymine-DNA glycosylase and G to A transition mutations at CpG sites.

Waters TR, Swann PF.

Mutat Res. 2000 Apr;462(2-3):137-47. Review.

PMID:
10767625
16.

Methyl-CpG binding proteins and cancer: are MeCpGs more important than MBDs?

Prokhortchouk E, Hendrich B.

Oncogene. 2002 Aug 12;21(35):5394-9. Review. No abstract available.

17.

The enigmatic thymine DNA glycosylase.

Cortázar D, Kunz C, Saito Y, Steinacher R, Schär P.

DNA Repair (Amst). 2007 Apr 1;6(4):489-504. Epub 2006 Nov 20. Review.

PMID:
17116428
18.

Supplemental Content

Support Center