Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 145

1.

A mutation in the Proteosomal Regulatory Particle AAA-ATPase-3 in Arabidopsis impairs the light-specific hypocotyl elongation response elicited by a glutamate receptor agonist, BMAA.

Brenner ED, Feinberg P, Runko S, Coruzzi GM.

Plant Mol Biol. 2009 Jul;70(5):523-33. doi: 10.1007/s11103-009-9489-7. Epub 2009 May 2.

PMID:
19412571
2.

Arabidopsis mutants resistant to S(+)-beta-methyl-alpha, beta-diaminopropionic acid, a cycad-derived glutamate receptor agonist.

Brenner ED, Martinez-Barboza N, Clark AP, Liang QS, Stevenson DW, Coruzzi GM.

Plant Physiol. 2000 Dec;124(4):1615-24.

3.

Procuste1 mutants identify two distinct genetic pathways controlling hypocotyl cell elongation, respectively in dark- and light-grown Arabidopsis seedlings.

Desnos T, Orbović V, Bellini C, Kronenberger J, Caboche M, Traas J, Höfte H.

Development. 1996 Feb;122(2):683-93.

4.
5.

The eer5 mutation, which affects a novel proteasome-related subunit, indicates a prominent role for the COP9 signalosome in resetting the ethylene-signaling pathway in Arabidopsis.

Christians MJ, Robles LM, Zeller SM, Larsen PB.

Plant J. 2008 Aug;55(3):467-77. doi: 10.1111/j.1365-313X.2008.03521.x. Epub 2008 Apr 17.

7.

The AT-hook-containing proteins SOB3/AHL29 and ESC/AHL27 are negative modulators of hypocotyl growth in Arabidopsis.

Street IH, Shah PK, Smith AM, Avery N, Neff MM.

Plant J. 2008 Apr;54(1):1-14. Epub 2007 Dec 15.

8.

A comparative analysis of the Arabidopsis mutant amp1-1 and a novel weak amp1 allele reveals new functions of the AMP1 protein.

Saibo NJ, Vriezen WH, De Grauwe L, Azmi A, Prinsen E, Van der Straeten D.

Planta. 2007 Mar;225(4):831-42.

PMID:
17006669
9.

A role for glycine in the gating of plant NMDA-like receptors.

Dubos C, Huggins D, Grant GH, Knight MR, Campbell MM.

Plant J. 2003 Sep;35(6):800-10. Erratum in: Plant J. 2003 Dec;36(5):741.

10.

Why hypocotyl extension mutants need to be characterized at the cell level: a case study of axr3-1.

Barley K.

J Exp Bot. 2004 May;55(399):1071-8. Epub 2004 Apr 8.

PMID:
15073219
11.

Interactions of light and ethylene in hypocotyl hook maintenance in Arabidopsis thaliana seedlings.

Knee EM, Hangarter RP, Knee M.

Physiol Plant. 2000 Feb;108(2):208-15.

PMID:
11543153
12.

Light-regulated hypocotyl elongation involves proteasome-dependent degradation of the microtubule regulatory protein WDL3 in Arabidopsis.

Liu X, Qin T, Ma Q, Sun J, Liu Z, Yuan M, Mao T.

Plant Cell. 2013 May;25(5):1740-55. doi: 10.1105/tpc.113.112789. Epub 2013 May 7.

13.
14.

The ABA1 gene and carotenoid biosynthesis are required for late skotomorphogenic growth in Arabidopsis thaliana.

Barrero JM, Rodríguez PL, Quesada V, Alabadí D, Blázquez MA, Boutin JP, Marion-Poll A, Ponce MR, Micol JL.

Plant Cell Environ. 2008 Feb;31(2):227-34. Epub 2007 Dec 7.

15.

Kanamycin reveals the role played by glutamate receptors in shaping plant resource allocation.

Dubos C, Willment J, Huggins D, Grant GH, Campbell MM.

Plant J. 2005 Aug;43(3):348-55.

16.

DFL2, a new member of the Arabidopsis GH3 gene family, is involved in red light-specific hypocotyl elongation.

Takase T, Nakazawa M, Ishikawa A, Manabe K, Matsui M.

Plant Cell Physiol. 2003 Oct;44(10):1071-80.

PMID:
14581632
17.
18.
19.

Cytokinin-induced hypocotyl elongation in light-grown Arabidopsis plants with inhibited ethylene action or indole-3-acetic acid transport.

Smets R, Le J, Prinsen E, Verbelen JP, Van Onckelen HA.

Planta. 2005 Apr;221(1):39-47. Epub 2004 Nov 20.

PMID:
15843964
20.

Phytochrome-mediated agravitropism in Arabidopsis hypocotyls requires GIL1 and confers a fitness advantage.

Allen T, Ingles PJ, Praekelt U, Smith H, Whitelam GC.

Plant J. 2006 May;46(4):641-8.

Supplemental Content

Support Center