Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 146

1.

No selenium required: reactions catalyzed by mammalian thioredoxin reductase that are independent of a selenocysteine residue.

Lothrop AP, Ruggles EL, Hondal RJ.

Biochemistry. 2009 Jul 7;48(26):6213-23. doi: 10.1021/bi802146w.

2.

A mechanistic investigation of the C-terminal redox motif of thioredoxin reductase from Plasmodium falciparum.

Snider GW, Dustin CM, Ruggles EL, Hondal RJ.

Biochemistry. 2014 Jan 28;53(3):601-9. doi: 10.1021/bi400931k. Epub 2014 Jan 17.

3.

Why is mammalian thioredoxin reductase 1 so dependent upon the use of selenium?

Lothrop AP, Snider GW, Ruggles EL, Hondal RJ.

Biochemistry. 2014 Jan 28;53(3):554-65. doi: 10.1021/bi400651x. Epub 2014 Jan 15.

4.

Selenium as an electron acceptor during the catalytic mechanism of thioredoxin reductase.

Lothrop AP, Snider GW, Ruggles EL, Patel AS, Lees WJ, Hondal RJ.

Biochemistry. 2014 Feb 4;53(4):654-63. doi: 10.1021/bi400658g. Epub 2014 Jan 23.

5.

Investigation of the C-terminal redox center of high-Mr thioredoxin reductase by protein engineering and semisynthesis.

Eckenroth BE, Lacey BM, Lothrop AP, Harris KM, Hondal RJ.

Biochemistry. 2007 Aug 21;46(33):9472-83. Epub 2007 Jul 28.

6.

Selenium and the thioredoxin and glutaredoxin systems.

Björnstedt M, Kumar S, Björkhem L, Spyrou G, Holmgren A.

Biomed Environ Sci. 1997 Sep;10(2-3):271-9. Review.

PMID:
9315320
7.
9.

Compensating for the absence of selenocysteine in high-molecular weight thioredoxin reductases: the electrophilic activation hypothesis.

Lothrop AP, Snider GW, Flemer S Jr, Ruggles EL, Davidson RS, Lamb AL, Hondal RJ.

Biochemistry. 2014 Feb 4;53(4):664-74. doi: 10.1021/bi4007258. Epub 2014 Jan 23.

10.

Methaneseleninic acid is a substrate for truncated mammalian thioredoxin reductase: implications for the catalytic mechanism and redox signaling.

Snider G, Grout L, Ruggles EL, Hondal RJ.

Biochemistry. 2010 Dec 7;49(48):10329-38. doi: 10.1021/bi101130t. Epub 2010 Nov 10.

11.

Structural and biochemical studies reveal differences in the catalytic mechanisms of mammalian and Drosophila melanogaster thioredoxin reductases.

Eckenroth BE, Rould MA, Hondal RJ, Everse SJ.

Biochemistry. 2007 Apr 24;46(16):4694-705. Epub 2007 Mar 27.

12.

Selenium in thioredoxin reductase: a mechanistic perspective.

Lacey BM, Eckenroth BE, Flemer S, Hondal RJ.

Biochemistry. 2008 Dec 2;47(48):12810-21. doi: 10.1021/bi800951f.

14.

Platyhelminth mitochondrial and cytosolic redox homeostasis is controlled by a single thioredoxin glutathione reductase and dependent on selenium and glutathione.

Bonilla M, Denicola A, Novoselov SV, Turanov AA, Protasio A, Izmendi D, Gladyshev VN, Salinas G.

J Biol Chem. 2008 Jun 27;283(26):17898-907. doi: 10.1074/jbc.M710609200. Epub 2008 Apr 11.

15.

Selenocysteine-containing thioredoxin reductase in C. elegans.

Gladyshev VN, Krause M, Xu XM, Korotkov KV, Kryukov GV, Sun QA, Lee BJ, Wootton JC, Hatfield DL.

Biochem Biophys Res Commun. 1999 Jun 7;259(2):244-9.

PMID:
10362494
16.

Selenocysteine confers resistance to inactivation by oxidation in thioredoxin reductase: comparison of selenium and sulfur enzymes.

Snider GW, Ruggles E, Khan N, Hondal RJ.

Biochemistry. 2013 Aug 13;52(32):5472-81. doi: 10.1021/bi400462j. Epub 2013 Jul 31.

17.
18.
20.

The selenium-independent inherent pro-oxidant NADPH oxidase activity of mammalian thioredoxin reductase and its selenium-dependent direct peroxidase activities.

Cheng Q, Antholine WE, Myers JM, Kalyanaraman B, Arnér ES, Myers CR.

J Biol Chem. 2010 Jul 9;285(28):21708-23. doi: 10.1074/jbc.M110.117259. Epub 2010 May 10.

Supplemental Content

Support Center