Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 343

1.

Amino acid metabolic origin as an evolutionary influence on protein sequence in yeast.

de Bivort BL, Perlstein EO, Kunes S, Schreiber SL.

J Mol Evol. 2009 May;68(5):490-7. doi: 10.1007/s00239-009-9218-5. Epub 2009 Apr 9.

2.
3.

Proportion of solvent-exposed amino acids in a protein and rate of protein evolution.

Lin YS, Hsu WL, Hwang JK, Li WH.

Mol Biol Evol. 2007 Apr;24(4):1005-11. Epub 2007 Jan 29.

PMID:
17264066
4.

Reinvestigating the codon and amino acid usage of S. cerevisiae genome: a new insight from protein secondary structure analysis.

Kahali B, Basak S, Ghosh TC.

Biochem Biophys Res Commun. 2007 Mar 16;354(3):693-9. Epub 2007 Jan 17.

PMID:
17258174
5.

The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.

Pham TK, Wright PC.

J Proteome Res. 2008 Nov;7(11):4766-74. doi: 10.1021/pr800331s. Epub 2008 Sep 23.

PMID:
18808174
6.

Exploring the evolutionary rate differences of party hub and date hub proteins in Saccharomyces cerevisiae protein-protein interaction network.

Kahali B, Ahmad S, Ghosh TC.

Gene. 2009 Jan 15;429(1-2):18-22. doi: 10.1016/j.gene.2008.09.032. Epub 2008 Oct 10.

PMID:
18973798
7.

Evolutionary constraints on yeast protein size.

Warringer J, Blomberg A.

BMC Evol Biol. 2006 Aug 15;6:61.

9.

Ammonia pulses and metabolic oscillations guide yeast colony development.

Palková Z, Devaux F, Icicová M, Mináriková L, Le Crom S, Jacq C.

Mol Biol Cell. 2002 Nov;13(11):3901-14.

10.

Solvent exposure imparts similar selective pressures across a range of yeast proteins.

Conant GC, Stadler PF.

Mol Biol Evol. 2009 May;26(5):1155-61. doi: 10.1093/molbev/msp031. Epub 2009 Feb 20.

PMID:
19233963
11.

Evolution of simple sequence in proteins.

Huntley M, Golding GB.

J Mol Evol. 2000 Aug;51(2):131-40.

PMID:
10948269
12.

Deletion of tandem repeats causes flocculation phenotype conversion from Flo1 to NewFlo in Saccharomyces cerevisiae.

Liu N, Wang DL, Wang ZY, He XP, Zhang BR.

J Mol Microbiol Biotechnol. 2009;16(3-4):137-45. Epub 2007 Dec 6.

PMID:
18057865
13.

Prevalent structural disorder in E. coli and S. cerevisiae proteomes.

Tompa P, Dosztanyi Z, Simon I.

J Proteome Res. 2006 Aug;5(8):1996-2000.

PMID:
16889422
14.

A single determinant dominates the rate of yeast protein evolution.

Drummond DA, Raval A, Wilke CO.

Mol Biol Evol. 2006 Feb;23(2):327-37. Epub 2005 Oct 19.

PMID:
16237209
15.

High-yield production and characterization of biologically active recombinant aprotinin expressed in Saccharomyces cerevisiae.

Meta A, Nakatake H, Imamura T, Nozaki C, Sugimura K.

Protein Expr Purif. 2009 Jul;66(1):22-7. doi: 10.1016/j.pep.2009.02.005. Epub 2009 Feb 20.

PMID:
19233283
16.

The coordinated evolution of yeast proteins is constrained by functional modularity.

Chen Y, Dokholyan NV.

Trends Genet. 2006 Aug;22(8):416-9. Epub 2006 Jun 23.

PMID:
16797778
17.

Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation.

Cheng JS, Zhou X, Ding MZ, Yuan YJ.

Appl Microbiol Biotechnol. 2009 Jul;83(5):909-23. doi: 10.1007/s00253-009-2037-1. Epub 2009 Jun 2.

PMID:
19488749
18.
19.

Identification of amino acids at two dimer interface regions of the alpha-factor receptor (Ste2).

Wang HX, Konopka JB.

Biochemistry. 2009 Aug 4;48(30):7132-9. doi: 10.1021/bi900424h.

PMID:
19588927
20.

Genetic basis of flocculation phenotype conversion in Saccharomyces cerevisiae.

Liu N, Wang D, Wang ZY, He XP, Zhang B.

FEMS Yeast Res. 2007 Dec;7(8):1362-70. Epub 2007 Jul 27.

Supplemental Content

Support Center