Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 92

1.

Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system.

Gardner CM, Tan H, Hull EL, Lisauskas JB, Sum ST, Meese TM, Jiang C, Madden SP, Caplan JD, Burke AP, Virmani R, Goldstein J, Muller JE.

JACC Cardiovasc Imaging. 2008 Sep;1(5):638-48. doi: 10.1016/j.jcmg.2008.06.001.

2.

In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study.

Waxman S, Dixon SR, L'Allier P, Moses JW, Petersen JL, Cutlip D, Tardif JC, Nesto RW, Muller JE, Hendricks MJ, Sum ST, Gardner CM, Goldstein JA, Stone GW, Krucoff MW.

JACC Cardiovasc Imaging. 2009 Jul;2(7):858-68. doi: 10.1016/j.jcmg.2009.05.001.

3.

Detection by near-infrared spectroscopy of large lipid core plaques at culprit sites in patients with acute ST-segment elevation myocardial infarction.

Madder RD, Goldstein JA, Madden SP, Puri R, Wolski K, Hendricks M, Sum ST, Kini A, Sharma S, Rizik D, Brilakis ES, Shunk KA, Petersen J, Weisz G, Virmani R, Nicholls SJ, Maehara A, Mintz GS, Stone GW, Muller JE.

JACC Cardiovasc Interv. 2013 Aug;6(8):838-46. doi: 10.1016/j.jcin.2013.04.012. Epub 2013 Jul 17.

4.

Comparison of near-infrared spectroscopy and optical coherence tomography for detection of lipid.

Yonetsu T, Suh W, Abtahian F, Kato K, Vergallo R, Kim SJ, Jia H, McNulty I, Lee H, Jang IK.

Catheter Cardiovasc Interv. 2014 Nov 1;84(5):710-7. doi: 10.1002/ccd.25084. Epub 2013 Jul 16.

PMID:
23785015
5.

Near-Infrared Spectroscopy Enhances Intravascular Ultrasound Assessment of Vulnerable Coronary Plaque: A Combined Pathological and In Vivo Study.

Puri R, Madder RD, Madden SP, Sum ST, Wolski K, Muller JE, Andrews J, King KL, Kataoka Y, Uno K, Kapadia SR, Tuzcu EM, Nissen SE, Virmani R, Maehara A, Mintz GS, Nicholls SJ.

Arterioscler Thromb Vasc Biol. 2015 Nov;35(11):2423-31. doi: 10.1161/ATVBAHA.115.306118. Epub 2015 Sep 3.

6.

Detection of vulnerable coronary artery plaques: lesion level risk assessment within the coronary arterial tree?

Young JJ.

JACC Cardiovasc Imaging. 2008 Sep;1(5):649-51. doi: 10.1016/j.jcmg.2008.07.003. No abstract available.

7.

Combined NIRS and IVUS imaging detects vulnerable plaque using a single catheter system: a head-to-head comparison with OCT.

Roleder T, Kovacic JC, Ali Z, Sharma R, Cristea E, Moreno P, Sharma SK, Narula J, Kini AS.

EuroIntervention. 2014 Jul;10(3):303-11. doi: 10.4244/EIJV10I3A53.

8.

Intercatheter reproducibility of near-infrared spectroscopy for the in vivo detection of coronary lipid core plaques.

Abdel-Karim AR, Rangan BV, Banerjee S, Brilakis ES.

Catheter Cardiovasc Interv. 2011 Apr 1;77(5):657-61. doi: 10.1002/ccd.22763. Epub 2011 Mar 8.

PMID:
20824764
9.

Disparity between angiographic coronary lesion complexity and lipid core plaques assessed by near-infrared spectroscopy.

Zynda TK, Thompson CD, Hoang KC, Seto AH, Glovaci D, Wong ND, Patel PM, Kern MJ.

Catheter Cardiovasc Interv. 2013 Feb;81(3):529-37. doi: 10.1002/ccd.24470. Epub 2012 Sep 24.

PMID:
22532512
10.

Association of coronary lipid core plaque with intrastent thrombus formation: a near-infrared spectroscopy and optical coherence tomography study.

Papayannis AC, Abdel-Karim AR, Mahmood A, Rangan BV, Makke LB, Banerjee S, Brilakis ES.

Catheter Cardiovasc Interv. 2013 Feb;81(3):488-93. doi: 10.1002/ccd.23389. Epub 2012 Jan 10.

PMID:
22234940
11.

NIRS and IVUS for characterization of atherosclerosis in patients undergoing coronary angiography.

Brugaletta S, Garcia-Garcia HM, Serruys PW, de Boer S, Ligthart J, Gomez-Lara J, Witberg K, Diletti R, Wykrzykowska J, van Geuns RJ, Schultz C, Regar E, Duckers HJ, van Mieghem N, de Jaegere P, Madden SP, Muller JE, van der Steen AF, van der Giessen WJ, Boersma E.

JACC Cardiovasc Imaging. 2011 Jun;4(6):647-55. doi: 10.1016/j.jcmg.2011.03.013.

12.

Combined IVUS and NIRS detection of fibroatheromas: histopathological validation in human coronary arteries.

Kang SJ, Mintz GS, Pu J, Sum ST, Madden SP, Burke AP, Xu K, Goldstein JA, Stone GW, Muller JE, Virmani R, Maehara A.

JACC Cardiovasc Imaging. 2015 Feb;8(2):184-94. doi: 10.1016/j.jcmg.2014.09.021. Epub 2015 Jan 7.

13.

Invasive evaluation of plaque morphology of symptomatic superficial femoral artery stenoses using combined near-infrared spectroscopy and intravascular ultrasound.

Zacharias SK, Safian RD, Madder RD, Hanson ID, Pica MC, Smith JL, Goldstein JA, Abbas AE.

Vasc Med. 2016 Aug;21(4):337-44. doi: 10.1177/1358863X16631420. Epub 2016 Mar 8.

PMID:
26957574
14.

Combined Near-Infrared Spectroscopy and Intravascular Ultrasound Imaging of Pre-Existing Coronary Artery Stents: Can Near-Infrared Spectroscopy Reliably Detect Neoatherosclerosis?

Madder RD, Khan M, Husaini M, Chi M, Dionne S, VanOosterhout S, Borgman A, Collins JS, Jacoby M.

Circ Cardiovasc Imaging. 2016 Jan;9(1). pii: e003576. doi: 10.1161/CIRCIMAGING.115.003576.

15.
16.

Confirmation of the Intracoronary Near-Infrared Spectroscopy Threshold of Lipid-Rich Plaques That Underlie ST-Segment-Elevation Myocardial Infarction.

Madder RD, Puri R, Muller JE, Harnek J, Götberg M, VanOosterhout S, Chi M, Wohns D, McNamara R, Wolski K, Madden S, Sidharta S, Andrews J, Nicholls SJ, Erlinge D.

Arterioscler Thromb Vasc Biol. 2016 May;36(5):1010-5. doi: 10.1161/ATVBAHA.115.306849. Epub 2016 Mar 3.

17.

The relationship among extent of lipid-rich plaque, lesion characteristics, and plaque progression/regression in patients with coronary artery disease: a serial near-infrared spectroscopy and intravascular ultrasound study.

Dohi T, Maehara A, Moreno PR, Baber U, Kovacic JC, Limaye AM, Ali ZA, Sweeny JM, Mehran R, Dangas GD, Xu K, Sharma SK, Mintz GS, Kini AS.

Eur Heart J Cardiovasc Imaging. 2015 Jan;16(1):81-7. doi: 10.1093/ehjci/jeu169. Epub 2014 Sep 4.

18.

Insights into echo-attenuated plaques, echolucent plaques, and plaques with spotty calcification: novel findings from comparisons among intravascular ultrasound, near-infrared spectroscopy, and pathological histology in 2,294 human coronary artery segments.

Pu J, Mintz GS, Biro S, Lee JB, Sum ST, Madden SP, Burke AP, Zhang P, He B, Goldstein JA, Stone GW, Muller JE, Virmani R, Maehara A.

J Am Coll Cardiol. 2014 Jun 3;63(21):2220-33. doi: 10.1016/j.jacc.2014.02.576. Epub 2014 Mar 26.

19.

Iterative image reconstruction algorithms in coronary CT angiography improve the detection of lipid-core plaque--a comparison with histology.

Puchner SB, Ferencik M, Maurovich-Horvat P, Nakano M, Otsuka F, Kauczor HU, Virmani R, Hoffmann U, Schlett CL.

Eur Radiol. 2015 Jan;25(1):15-23. doi: 10.1007/s00330-014-3404-6. Epub 2014 Sep 3.

PMID:
25182630
20.

Embolic protection device utilization during stenting of native coronary artery lesions with large lipid core plaques as detected by near-infrared spectroscopy.

Brilakis ES, Abdel-Karim AR, Papayannis AC, Michael TT, Rangan BV, Johnson JL, Banerjee S.

Catheter Cardiovasc Interv. 2012 Dec 1;80(7):1157-62. doi: 10.1002/ccd.23507. Epub 2012 Apr 17.

PMID:
22511587

Supplemental Content

Support Center