Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 314

1.

Mitochondrial bioenergetic background confers a survival advantage to HepG2 cells in response to chemotherapy.

Loiseau D, Morvan D, Chevrollier A, Demidem A, Douay O, Reynier P, Stepien G.

Mol Carcinog. 2009 Aug;48(8):733-41. doi: 10.1002/mc.20539.

PMID:
19347860
2.

Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells.

Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, Armistead S, Lemire K, Orrell J, Teich J, Chomicz S, Ferrick DA.

Am J Physiol Cell Physiol. 2007 Jan;292(1):C125-36. Epub 2006 Sep 13.

3.

Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate.

Pereira da Silva AP, El-Bacha T, Kyaw N, dos Santos RS, da-Silva WS, Almeida FC, Da Poian AT, Galina A.

Biochem J. 2009 Feb 1;417(3):717-26. doi: 10.1042/BJ20080805.

PMID:
18945211
4.

Control of cellular proliferation by modulation of oxidative phosphorylation in human and rodent fast-growing tumor cells.

Rodríguez-Enríquez S, Vital-González PA, Flores-Rodríguez FL, Marín-Hernández A, Ruiz-Azuara L, Moreno-Sánchez R.

Toxicol Appl Pharmacol. 2006 Sep 1;215(2):208-17. Epub 2006 Mar 31.

PMID:
16580038
5.

Mitochondrial bioenergetic profile and responses to metabolic inhibition in human hepatocarcinoma cell lines with distinct differentiation characteristics.

Domenis R, Comelli M, Bisetto E, Mavelli I.

J Bioenerg Biomembr. 2011 Oct;43(5):493-505. doi: 10.1007/s10863-011-9380-5. Epub 2011 Sep 1.

PMID:
21882038
6.

Increased OXPHOS activity precedes rise in glycolytic rate in H-RasV12/E1A transformed fibroblasts that develop a Warburg phenotype.

de Groof AJ, te Lindert MM, van Dommelen MM, Wu M, Willemse M, Smift AL, Winer M, Oerlemans F, Pluk H, Fransen JA, Wieringa B.

Mol Cancer. 2009 Jul 31;8:54. doi: 10.1186/1476-4598-8-54.

7.

ANT2 isoform required for cancer cell glycolysis.

Chevrollier A, Loiseau D, Chabi B, Renier G, Douay O, Malthièry Y, Stepien G.

J Bioenerg Biomembr. 2005 Oct;37(5):307-16.

PMID:
16341775
8.

Impaired mitochondrial Ca2+ homeostasis in respiratory chain-deficient cells but efficient compensation of energetic disadvantage by enhanced anaerobic glycolysis due to low ATP steady state levels.

von Kleist-Retzow JC, Hornig-Do HT, Schauen M, Eckertz S, Dinh TA, Stassen F, Lottmann N, Bust M, Galunska B, Wielckens K, Hein W, Beuth J, Braun JM, Fischer JH, Ganitkevich VY, Maniura-Weber K, Wiesner RJ.

Exp Cell Res. 2007 Aug 15;313(14):3076-89. Epub 2007 Apr 19.

PMID:
17509565
10.

A novel benzotriazole derivative inhibits proliferation of human hepatocarcinoma cells by increasing oxidative stress concomitant mitochondrial damage.

Zhang SS, Zhang HQ, Li D, Sun LH, Ma CP, Wang W, Wan J, Qu B.

Eur J Pharmacol. 2008 Apr 14;584(1):144-52. doi: 10.1016/j.ejphar.2008.01.041. Epub 2008 Feb 8.

PMID:
18343364
11.

Effects of enhancing mitochondrial oxidative phosphorylation with reducing equivalents and ubiquinone on 1-methyl-4-phenylpyridinium toxicity and complex I-IV damage in neuroblastoma cells.

Mazzio EA, Soliman KF.

Biochem Pharmacol. 2004 Mar 15;67(6):1167-84. Erratum in: Biochem Pharmacol. 2004 May 1;67(9):1809.

PMID:
15006552
12.

Apoptosis is induced by decline of mitochondrial ATP synthesis in erythroleukemia cells.

Comelli M, Di Pancrazio F, Mavelli I.

Free Radic Biol Med. 2003 May 1;34(9):1190-9.

PMID:
12706499
13.

Pharmacologic manipulations of mitochondrial membrane potential (DeltaPsim) selectively in glioma cells.

Griguer CE, Oliva CR, Gillespie GY, Gobin E, Marcorelles P, Yancey Gillespie G.

J Neurooncol. 2007 Jan;81(1):9-20. Epub 2006 Jul 22.

PMID:
16862448
14.

Substrate oxidation and ATP supply in AS-30D hepatoma cells.

Rodríguez-Enríquez S, Torres-Márquez ME, Moreno-Sánchez R.

Arch Biochem Biophys. 2000 Mar 1;375(1):21-30.

PMID:
10683245
15.

Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III.

Bonora E, Porcelli AM, Gasparre G, Biondi A, Ghelli A, Carelli V, Baracca A, Tallini G, Martinuzzi A, Lenaz G, Rugolo M, Romeo G.

Cancer Res. 2006 Jun 15;66(12):6087-96.

16.

Effect of IL-1beta on survival and energy metabolism of R28 and RGC-5 retinal neurons.

Abcouwer SF, Shanmugam S, Gomez PF, Shushanov S, Barber AJ, Lanoue KF, Quinn PG, Kester M, Gardner TW.

Invest Ophthalmol Vis Sci. 2008 Dec;49(12):5581-92. doi: 10.1167/iovs.07-1032.

PMID:
19037001
17.

Glucose metabolism heterogeneity in human and mouse malignant glioma cell lines.

Griguer CE, Oliva CR, Gillespie GY.

J Neurooncol. 2005 Sep;74(2):123-33.

PMID:
16193382
18.

Regulation of mitochondrial gene expression by energy demand in neural cells.

Mehrabian Z, Liu LI, Fiskum G, Rapoport SI, Chandrasekaran K.

J Neurochem. 2005 May;93(4):850-60.

19.

Cultivation in glucose-deprived medium stimulates mitochondrial biogenesis and oxidative metabolism in HepG2 hepatoma cells.

Weber K, Ridderskamp D, Alfert M, Hoyer S, Wiesner RJ.

Biol Chem. 2002 Feb;383(2):283-90.

PMID:
11934266
20.

Viral fusogenic membrane glycoprotein expression causes syncytia formation with bioenergetic cell death: implications for gene therapy.

Higuchi H, Bronk SF, Bateman A, Harrington K, Vile RG, Gores GJ.

Cancer Res. 2000 Nov 15;60(22):6396-402.

Supplemental Content

Support Center