Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

Assembly of subunit d (Vma6p) and G (Vma10p) and the NMR solution structure of subunit G (G(1-59)) of the Saccharomyces cerevisiae V(1)V(O) ATPase.

Rishikesan S, Gayen S, Thaker YR, Vivekanandan S, Manimekalai MS, Yau YH, Shochat SG, Grüber G.

Biochim Biophys Acta. 2009 Apr;1787(4):242-51. doi: 10.1016/j.bbabio.2009.01.010. Epub 2009 Jan 22.

2.

The NMR solution structure of subunit G (G(61)(-)(101)) of the eukaryotic V1VO ATPase from Saccharomyces cerevisiae.

Rishikesan S, Manimekalai MS, Grüber G.

Biochim Biophys Acta. 2010 Oct;1798(10):1961-8. doi: 10.1016/j.bbamem.2010.06.012. Epub 2010 Jun 27.

3.

Crystal and NMR structures give insights into the role and dynamics of subunit F of the eukaryotic V-ATPase from Saccharomyces cerevisiae.

Basak S, Lim J, Manimekalai MS, Balakrishna AM, Grüber G.

J Biol Chem. 2013 Apr 26;288(17):11930-9. doi: 10.1074/jbc.M113.461533. Epub 2013 Mar 8.

4.

NMR solution structure of subunit E (fragment E(1-69)) of the Saccharomyces cerevisiae V (1)V (O) ATPase.

Rishikesan S, Thaker YR, Grüber G.

J Bioenerg Biomembr. 2011 Apr;43(2):187-93. doi: 10.1007/s10863-011-9342-y. Epub 2011 Mar 12.

PMID:
21399923
5.

Spectroscopical identification of residues of subunit G of the yeast V-ATPase in its connection with subunit E.

Rishikesan S, Thaker YR, Priya R, Gayen S, Manimekalai MS, Hunke C, Gruber G.

Mol Membr Biol. 2008 Aug;25(5):400-10. doi: 10.1080/09687680802183434.

PMID:
18651318
6.

Defined sites of interaction between subunits E (Vma4p), C (Vma5p), and G (Vma10p) within the stator structure of the vacuolar H+-ATPase.

Jones RP, Durose LJ, Findlay JB, Harrison MA.

Biochemistry. 2005 Mar 15;44(10):3933-41. Erratum in: Biochemistry. 2005 Sep 6;44(35):11924.

PMID:
15751969
7.

Solution structure of subunit F (Vma7p) of the eukaryotic V(1)V(O) ATPase from Saccharomyces cerevisiae derived from SAXS and NMR spectroscopy.

Basak S, Gayen S, Thaker YR, Manimekalai MS, Roessle M, Hunke C, Grüber G.

Biochim Biophys Acta. 2011 Jan;1808(1):360-8. doi: 10.1016/j.bbamem.2010.09.003. Epub 2010 Sep 15.

8.

Identification of a domain in the V0 subunit d that is critical for coupling of the yeast vacuolar proton-translocating ATPase.

Owegi MA, Pappas DL, Finch MW Jr, Bilbo SA, Resendiz CA, Jacquemin LJ, Warrier A, Trombley JD, McCulloch KM, Margalef KL, Mertz MJ, Storms JM, Damin CA, Parra KJ.

J Biol Chem. 2006 Oct 6;281(40):30001-14. Epub 2006 Aug 4.

9.

Solution structure of subunit a, a₁₀₄₋₃₆₃, of the Saccharomyces cerevisiae V-ATPase and the importance of its C-terminus in structure formation.

Dip PV, Saw WG, Roessle M, Marshansky V, Grüber G.

J Bioenerg Biomembr. 2012 Jun;44(3):341-50. doi: 10.1007/s10863-012-9442-3. Epub 2012 May 5.

PMID:
22562380
10.

Probing subunit-subunit interactions in the yeast vacuolar ATPase by peptide arrays.

Parsons LS, Wilkens S.

PLoS One. 2012;7(10):e46960. doi: 10.1371/journal.pone.0046960. Epub 2012 Oct 12.

11.

Defective assembly of a hybrid vacuolar H(+)-ATPase containing the mouse testis-specific E1 isoform and yeast subunits.

Hayashi K, Sun-Wada GH, Wada Y, Nakanishi-Matsui M, Futai M.

Biochim Biophys Acta. 2008 Oct;1777(10):1370-7. doi: 10.1016/j.bbabio.2008.06.011. Epub 2008 Jul 9.

12.

The boxing glove shape of subunit d of the yeast V-ATPase in solution and the importance of disulfide formation for folding of this protein.

Thaker YR, Roessle M, Grüber G.

J Bioenerg Biomembr. 2007 Aug;39(4):275-89. Epub 2007 Sep 26.

PMID:
17896169
13.

Structural elements of the C-terminal domain of subunit E (E₁₃₃₋₂₂₂) from the Saccharomyces cerevisiae V₁V₀ ATPase determined by solution NMR spectroscopy.

Rishikesan S, Grüber G.

J Bioenerg Biomembr. 2011 Oct;43(5):447-55. doi: 10.1007/s10863-011-9379-y. Epub 2011 Aug 9.

PMID:
21826517
14.

The first putative transmembrane segment of subunit c" (Vma16p) of the yeast V-ATPase is not necessary for function.

Nishi T, Kawasaki-Nishi S, Forgac M.

J Biol Chem. 2003 Feb 21;278(8):5821-7. Epub 2002 Dec 12.

15.

Structural properties of a peptide derived from H+ -V-ATPase subunit a.

Vermeer LS, Réat V, Hemminga MA, Milon A.

Biochim Biophys Acta. 2009 May;1788(5):1204-12. doi: 10.1016/j.bbamem.2009.02.015. Epub 2009 Feb 26.

16.

Crystal structure of subunits D and F in complex gives insight into energy transmission of the eukaryotic V-ATPase from Saccharomyces cerevisiae.

Balakrishna AM, Basak S, Manimekalai MS, Grüber G.

J Biol Chem. 2015 Feb 6;290(6):3183-96. doi: 10.1074/jbc.M114.622688. Epub 2014 Dec 12.

17.

Association of the eukaryotic V1VO ATPase subunits a with d and d with A.

Thaker YR, Hunke C, Yau YH, Shochat SG, Li Y, Grüber G.

FEBS Lett. 2009 Apr 2;583(7):1090-5. doi: 10.1016/j.febslet.2009.03.013. Epub 2009 Mar 14.

18.

Expression, purification and secondary structure analysis of Saccharomyces cerevisiae vacuolar membrane H+-ATPase subunit F (Vma7p).

Jones RP, Hunt IE, Jaeger J, Ward A, O'Reilly J, Barratt EA, Findlay JB, Harrison MA.

Mol Membr Biol. 2001 Oct-Dec;18(4):283-90.

PMID:
11780757
19.

Subunit interactions at the V1-Vo interface in yeast vacuolar ATPase.

Oot RA, Wilkens S.

J Biol Chem. 2012 Apr 13;287(16):13396-406. doi: 10.1074/jbc.M112.343962. Epub 2012 Feb 24.

20.

Molecular Interactions and Cellular Itinerary of the Yeast RAVE (Regulator of the H+-ATPase of Vacuolar and Endosomal Membranes) Complex.

Smardon AM, Nasab ND, Tarsio M, Diakov TT, Kane PM.

J Biol Chem. 2015 Nov 13;290(46):27511-23. doi: 10.1074/jbc.M115.667634. Epub 2015 Sep 24.

Supplemental Content

Support Center