Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 121

1.

Pulmonary thermal ablation: comparison of radiofrequency and microwave devices by using gross pathologic and CT findings in a swine model.

Brace CL, Hinshaw JL, Laeseke PF, Sampson LA, Lee FT Jr.

Radiology. 2009 Jun;251(3):705-11. doi: 10.1148/radiol.2513081564. Epub 2009 Mar 31.

2.

Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes.

Laeseke PF, Lee FT Jr, Sampson LA, van der Weide DW, Brace CL.

J Vasc Interv Radiol. 2009 Sep;20(9):1224-9. doi: 10.1016/j.jvir.2009.05.029. Epub 2009 Jul 18.

3.

Microwaves create larger ablations than radiofrequency when controlled for power in ex vivo tissue.

Andreano A, Huang Y, Meloni MF, Lee FT Jr, Brace C.

Med Phys. 2010 Jun;37(6):2967-73.

4.

High-powered microwave ablation with a small-gauge, gas-cooled antenna: initial ex vivo and in vivo results.

Lubner MG, Hinshaw JL, Andreano A, Sampson L, Lee FT Jr, Brace CL.

J Vasc Interv Radiol. 2012 Mar;23(3):405-11. doi: 10.1016/j.jvir.2011.11.003. Epub 2012 Jan 24.

5.

Microwave ablation with triaxial antennas tuned for lung: results in an in vivo porcine model.

Durick NA, Laeseke PF, Broderick LS, Lee FT Jr, Sampson LA, Frey TM, Warner TF, Fine JP, van der Weide DW, Brace CL.

Radiology. 2008 Apr;247(1):80-7. doi: 10.1148/radiol.2471062123. Epub 2008 Feb 21.

PMID:
18292471
6.

Creation of short microwave ablation zones: in vivo characterization of single and paired modified triaxial antennas.

Lubner MG, Ziemlewicz TJ, Hinshaw JL, Lee FT Jr, Sampson LA, Brace CL.

J Vasc Interv Radiol. 2014 Oct;25(10):1633-40. doi: 10.1016/j.jvir.2014.06.032. Epub 2014 Aug 23.

7.

Microwave ablation compared with radiofrequency ablation in lung tissue-is microwave not just for popcorn anymore?

Dupuy DE.

Radiology. 2009 Jun;251(3):617-8. doi: 10.1148/radiol.2513090129.

PMID:
19474368
8.

Radiofrequency versus microwave ablation in a hepatic porcine model.

Wright AS, Sampson LA, Warner TF, Mahvi DM, Lee FT Jr.

Radiology. 2005 Jul;236(1):132-9.

PMID:
15987969
9.

Microwave ablation with multiple simultaneously powered small-gauge triaxial antennas: results from an in vivo swine liver model.

Brace CL, Laeseke PF, Sampson LA, Frey TM, van der Weide DW, Lee FT Jr.

Radiology. 2007 Jul;244(1):151-6.

PMID:
17581900
10.

Microwave ablation with a single small-gauge triaxial antenna: in vivo porcine liver model.

Brace CL, Laeseke PF, Sampson LA, Frey TM, van der Weide DW, Lee FT Jr.

Radiology. 2007 Feb;242(2):435-40.

11.

A comparison of microwave ablation and bipolar radiofrequency ablation both with an internally cooled probe: results in ex vivo and in vivo porcine livers.

Yu J, Liang P, Yu X, Liu F, Chen L, Wang Y.

Eur J Radiol. 2011 Jul;79(1):124-30. doi: 10.1016/j.ejrad.2009.12.009. Epub 2010 Jan 4.

PMID:
20047812
12.

Internally gas-cooled radiofrequency applicators as an alternative to conventional radiofrequency and microwave ablation devices: an in vivo comparison.

Rempp H, Voigtländer M, Schenk M, Enderle MD, Scharpf M, Greiner TO, Neugebauer A, Hoffmann R, Claussen CD, Clasen S.

Eur J Radiol. 2013 Aug;82(8):e350-5. doi: 10.1016/j.ejrad.2013.02.029. Epub 2013 Mar 20.

PMID:
23522746
13.

Radiofrequency ablation in pig lungs: in vivo comparison of internally cooled, perfusion and multitined expandable electrodes.

Lee JM, Han JK, Chang JM, Chung SY, Kim SH, Lee JY, Choi BI.

Br J Radiol. 2006 Jul;79(943):562-71.

PMID:
16823060
14.

Tissue contraction caused by radiofrequency and microwave ablation: a laboratory study in liver and lung.

Brace CL, Diaz TA, Hinshaw JL, Lee FT Jr.

J Vasc Interv Radiol. 2010 Aug;21(8):1280-6. doi: 10.1016/j.jvir.2010.02.038. Epub 2010 May 27.

15.

Efficacy of microwave versus radiofrequency ablation for treatment of small hepatocellular carcinoma: experimental and clinical studies.

Qian GJ, Wang N, Shen Q, Sheng YH, Zhao JQ, Kuang M, Liu GJ, Wu MC.

Eur Radiol. 2012 Sep;22(9):1983-90. doi: 10.1007/s00330-012-2442-1. Epub 2012 Apr 28.

PMID:
22544225
16.

Thermal ablation of lung tissue: in vivo experimental comparison of microwave and radiofrequency.

Crocetti L, Bozzi E, Faviana P, Cioni D, Della Pina C, Sbrana A, Fontanini G, Lencioni R.

Cardiovasc Intervent Radiol. 2010 Aug;33(4):818-27. doi: 10.1007/s00270-010-9869-z. Epub 2010 May 5.

PMID:
20442998
17.

A dual-slot microwave antenna for more spherical ablation zones: ex vivo and in vivo validation.

Chiang J, Hynes KA, Bedoya M, Brace CL.

Radiology. 2013 Aug;268(2):382-9. doi: 10.1148/radiol.13122128. Epub 2013 Apr 11.

18.

Radiofrequency ablation: simultaneous application of multiple electrodes via switching creates larger, more confluent ablations than sequential application in a large animal model.

Brace CL, Sampson LA, Hinshaw JL, Sandhu N, Lee FT Jr.

J Vasc Interv Radiol. 2009 Jan;20(1):118-24. doi: 10.1016/j.jvir.2008.09.021. Epub 2008 Nov 18.

19.

Intraoperative microwave ablation of pulmonary malignancies with tumor permittivity feedback control: ablation and resection study in 10 consecutive patients.

Wolf FJ, Aswad B, Ng T, Dupuy DE.

Radiology. 2012 Jan;262(1):353-60. doi: 10.1148/radiol.11110015. Epub 2011 Nov 21.

PMID:
22106348
20.

High-powered gas-cooled microwave ablation: shaft cooling creates an effective stick function without altering the ablation zone.

Knavel EM, Hinshaw JL, Lubner MG, Andreano A, Warner TF, Lee FT Jr, Brace CL.

AJR Am J Roentgenol. 2012 Mar;198(3):W260-5. doi: 10.2214/AJR.11.6503.

Supplemental Content

Support Center