Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 41

1.

Modularity of MAP kinases allows deformation of their signalling pathways.

Mody A, Weiner J, Ramanathan S.

Nat Cell Biol. 2009 Apr;11(4):484-91. doi: 10.1038/ncb1856. Epub 2009 Mar 22.

2.

The role of docking interactions in mediating signaling input, output, and discrimination in the yeast MAPK network.

Reményi A, Good MC, Bhattacharyya RP, Lim WA.

Mol Cell. 2005 Dec 22;20(6):951-62.

3.

MAPK specificity in the yeast pheromone response independent of transcriptional activation.

Breitkreutz A, Boucher L, Tyers M.

Curr Biol. 2001 Aug 21;11(16):1266-71.

4.

The Ste5 scaffold allosterically modulates signaling output of the yeast mating pathway.

Bhattacharyya RP, Reményi A, Good MC, Bashor CJ, Falick AM, Lim WA.

Science. 2006 Feb 10;311(5762):822-6. Epub 2006 Jan 19.

5.

A conserved protein interaction network involving the yeast MAP kinases Fus3 and Kss1.

Kusari AB, Molina DM, Sabbagh W Jr, Lau CS, Bardwell L.

J Cell Biol. 2004 Jan 19;164(2):267-77.

6.

Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms.

Park SH, Zarrinpar A, Lim WA.

Science. 2003 Feb 14;299(5609):1061-4. Epub 2003 Jan 2.

7.

Analysis of mitogen-activated protein kinase activity in yeast.

Elion EA, Sahoo R.

Methods Mol Biol. 2010;661:387-99. doi: 10.1007/978-1-60761-795-2_23.

PMID:
20811996
8.

Single-cell analysis reveals that insulation maintains signaling specificity between two yeast MAPK pathways with common components.

Patterson JC, Klimenko ES, Thorner J.

Sci Signal. 2010 Oct 19;3(144):ra75. doi: 10.1126/scisignal.2001275.

9.
10.

Tighter αC-helix-αL16-helix interactions seem to make p38α less prone to activation by autophosphorylation than Hog1.

Tesker M, Selamat SE, Beenstock J, Hayouka R, Livnah O, Engelberg D.

Biosci Rep. 2016 Apr 27;36(2). pii: e00324. doi: 10.1042/BSR20160020. Print 2016.

11.

Regulation of cell signaling dynamics by the protein kinase-scaffold Ste5.

Hao N, Nayak S, Behar M, Shanks RH, Nagiec MJ, Errede B, Hasty J, Elston TC, Dohlman HG.

Mol Cell. 2008 Jun 6;30(5):649-56. doi: 10.1016/j.molcel.2008.04.016.

12.

Exploitation of latent allostery enables the evolution of new modes of MAP kinase regulation.

Coyle SM, Flores J, Lim WA.

Cell. 2013 Aug 15;154(4):875-87. doi: 10.1016/j.cell.2013.07.019.

13.

Pheromone-induced morphogenesis and gradient tracking are dependent on the MAPK Fus3 binding to Gα.

Errede B, Vered L, Ford E, Pena MI, Elston TC.

Mol Biol Cell. 2015 Sep 15;26(18):3343-58. doi: 10.1091/mbc.E15-03-0176. Epub 2015 Jul 15.

14.
15.

Rewiring MAP kinases in Saccharomyces cerevisiae to regulate novel targets through ubiquitination.

Groves B, Khakhar A, Nadel CM, Gardner RG, Seelig G.

Elife. 2016 Aug 15;5. pii: e15200. doi: 10.7554/eLife.15200.

16.

Proper protein glycosylation promotes mitogen-activated protein kinase signal fidelity.

Lien EC, Nagiec MJ, Dohlman HG.

Biochemistry. 2013 Jan 8;52(1):115-24. doi: 10.1021/bi3009483. Epub 2012 Dec 20.

17.

Dynamic localization of Fus3 mitogen-activated protein kinase is necessary to evoke appropriate responses and avoid cytotoxic effects.

Chen RE, Patterson JC, Goupil LS, Thorner J.

Mol Cell Biol. 2010 Sep;30(17):4293-307. doi: 10.1128/MCB.00361-10. Epub 2010 Jun 28.

18.

Identification of a novel Ser/Thr protein phosphatase Ppq1 as a negative regulator of mating MAP kinase pathway in Saccharomyces cerevisiae.

Shim E, Park SH.

Biochem Biophys Res Commun. 2014 Jan 3;443(1):252-8. doi: 10.1016/j.bbrc.2013.11.110. Epub 2013 Dec 2.

PMID:
24309106
20.

Signal inhibition by a dynamically regulated pool of monophosphorylated MAPK.

Nagiec MJ, McCarter PC, Kelley JB, Dixit G, Elston TC, Dohlman HG.

Mol Biol Cell. 2015 Sep 15;26(18):3359-71. doi: 10.1091/mbc.E15-01-0037. Epub 2015 Jul 15.

Supplemental Content

Support Center