Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 64

1.

Proteomic profiling of KATP channel-deficient hypertensive heart maps risk for maladaptive cardiomyopathic outcome.

Zlatkovic J, Arrell DK, Kane GC, Miki T, Seino S, Terzic A.

Proteomics. 2009 Mar;9(5):1314-25. doi: 10.1002/pmic.200800718.

2.

ATP-sensitive K+ channel knockout induces cardiac proteome remodeling predictive of heart disease susceptibility.

Arrell DK, Zlatkovic J, Kane GC, Yamada S, Terzic A.

J Proteome Res. 2009 Oct;8(10):4823-34. doi: 10.1021/pr900561g.

3.

Protection conferred by myocardial ATP-sensitive K+ channels in pressure overload-induced congestive heart failure revealed in KCNJ11 Kir6.2-null mutant.

Yamada S, Kane GC, Behfar A, Liu XK, Dyer RB, Faustino RS, Miki T, Seino S, Terzic A.

J Physiol. 2006 Dec 15;577(Pt 3):1053-65. Epub 2006 Oct 12.

4.

ATP-sensitive K(+) channel-deficient dilated cardiomyopathy proteome remodeled by embryonic stem cell therapy.

Zlatkovic-Lindor J, Arrell DK, Yamada S, Nelson TJ, Terzic A.

Stem Cells. 2010 Aug;28(8):1355-67. doi: 10.1002/stem.465.

5.

K(ATP) channel-dependent metaboproteome decoded: systems approaches to heart failure prediction, diagnosis, and therapy.

Arrell DK, Zlatkovic Lindor J, Yamada S, Terzic A.

Cardiovasc Res. 2011 May 1;90(2):258-66. doi: 10.1093/cvr/cvr046. Epub 2011 Feb 14. Review.

6.

Embryonic stem cell therapy of heart failure in genetic cardiomyopathy.

Yamada S, Nelson TJ, Crespo-Diaz RJ, Perez-Terzic C, Liu XK, Miki T, Seino S, Behfar A, Terzic A.

Stem Cells. 2008 Oct;26(10):2644-53. doi: 10.1634/stemcells.2008-0187. Epub 2008 Jul 31.

7.

KATP channel knockout worsens myocardial calcium stress load in vivo and impairs recovery in stunned heart.

Gumina RJ, O'Cochlain DF, Kurtz CE, Bast P, Pucar D, Mishra P, Miki T, Seino S, Macura S, Terzic A.

Am J Physiol Heart Circ Physiol. 2007 Apr;292(4):H1706-13. Epub 2006 Dec 22.

8.

KCNJ11 gene knockout of the Kir6.2 KATP channel causes maladaptive remodeling and heart failure in hypertension.

Kane GC, Behfar A, Dyer RB, O'Cochlain DF, Liu XK, Hodgson DM, Reyes S, Miki T, Seino S, Terzic A.

Hum Mol Genet. 2006 Aug 1;15(15):2285-97. Epub 2006 Jun 16.

PMID:
16782803
9.

Mechanical dyssynchrony precedes QRS widening in ATP-sensitive K⁺ channel-deficient dilated cardiomyopathy.

Yamada S, Arrell DK, Kane GC, Nelson TJ, Perez-Terzic CM, Behfar A, Purushothaman S, Prinzen FW, Auricchio A, Terzic A.

J Am Heart Assoc. 2013 Dec 5;2(6):e000410. doi: 10.1161/JAHA.113.000410.

10.

Functional roles of cardiac and vascular ATP-sensitive potassium channels clarified by Kir6.2-knockout mice.

Suzuki M, Li RA, Miki T, Uemura H, Sakamoto N, Ohmoto-Sekine Y, Tamagawa M, Ogura T, Seino S, Marbán E, Nakaya H.

Circ Res. 2001 Mar 30;88(6):570-7.

11.

Role of sarcolemmal ATP-sensitive K+ channels in the regulation of sinoatrial node automaticity: an evaluation using Kir6.2-deficient mice.

Fukuzaki K, Sato T, Miki T, Seino S, Nakaya H.

J Physiol. 2008 Jun 1;586(11):2767-78. doi: 10.1113/jphysiol.2007.148932. Epub 2008 Apr 17.

12.

Role of ATP-sensitive K+ channels in electrophysiological alterations during myocardial ischemia: a study using Kir6.2-null mice.

Saito T, Sato T, Miki T, Seino S, Nakaya H.

Am J Physiol Heart Circ Physiol. 2005 Jan;288(1):H352-7.

13.

Gene knockout of the KCNJ8-encoded Kir6.1 K(ATP) channel imparts fatal susceptibility to endotoxemia.

Kane GC, Lam CF, O'Cochlain F, Hodgson DM, Reyes S, Liu XK, Miki T, Seino S, Katusic ZS, Terzic A.

FASEB J. 2006 Nov;20(13):2271-80.

PMID:
17077304
14.

Kir6.2 is not the mitochondrial KATP channel but is required for cardioprotection by ischemic preconditioning.

Wojtovich AP, Urciuoli WR, Chatterjee S, Fisher AB, Nehrke K, Brookes PS.

Am J Physiol Heart Circ Physiol. 2013 Jun 1;304(11):H1439-45. doi: 10.1152/ajpheart.00972.2012. Epub 2013 Apr 12.

15.

Functional roles of KATP channel subunits in metabolic inhibition.

Glukhov AV, Uchida K, Efimov IR, Nichols CG.

J Mol Cell Cardiol. 2013 Sep;62:90-8. doi: 10.1016/j.yjmcc.2013.04.016. Epub 2013 Apr 23.

16.

Hypotension due to Kir6.1 gain-of-function in vascular smooth muscle.

Li A, Knutsen RH, Zhang H, Osei-Owusu P, Moreno-Dominguez A, Harter TM, Uchida K, Remedi MS, Dietrich HH, Bernal-Mizrachi C, Blumer KJ, Mecham RP, Koster JC, Nichols CG.

J Am Heart Assoc. 2013 Aug 23;2(4):e000365. doi: 10.1161/JAHA.113.000365.

17.

Knockout of Kir6.2 negates ischemic preconditioning-induced protection of myocardial energetics.

Gumina RJ, Pucar D, Bast P, Hodgson DM, Kurtz CE, Dzeja PP, Miki T, Seino S, Terzic A.

Am J Physiol Heart Circ Physiol. 2003 Jun;284(6):H2106-13. Epub 2003 Feb 21.

18.

Impaired activation of ATP-sensitive K+ channels in endocardial myocytes from left ventricular hypertrophy.

Shimokawa J, Yokoshiki H, Tsutsui H.

Am J Physiol Heart Circ Physiol. 2007 Dec;293(6):H3643-9. Epub 2007 Oct 5.

19.

Behavioral phenotyping of mice lacking the K ATP channel subunit Kir6.2.

Deacon RM, Brook RC, Meyer D, Haeckel O, Ashcroft FM, Miki T, Seino S, Liss B.

Physiol Behav. 2006 Apr 15;87(4):723-33. Epub 2006 Mar 10.

PMID:
16530794
20.

Cardiac specific ATP-sensitive K+ channel (KATP) overexpression results in embryonic lethality.

Toib A, Zhang HX, Broekelmann TJ, Hyrc KL, Guo Q, Chen F, Remedi MS, Nichols CG.

J Mol Cell Cardiol. 2012 Sep;53(3):437-45. doi: 10.1016/j.yjmcc.2012.07.001. Epub 2012 Jul 13.

Supplemental Content

Support Center