Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Staphylococcus aureus ClpC ATPase is a late growth phase effector of metabolism and persistence.

Chatterjee I, Schmitt S, Batzilla CF, Engelmann S, Keller A, Ring MW, Kautenburger R, Ziebuhr W, Hecker M, Preissner KT, Bischoff M, Proctor RA, Beck HP, Lenhof HP, Somerville GA, Herrmann M.

Proteomics. 2009 Mar;9(5):1152-76. doi: 10.1002/pmic.200800586.

PMID:
19253280
2.

Staphylococcus aureus ClpC is involved in protection of carbon-metabolizing enzymes from carbonylation during stationary growth phase.

Chatterjee I, Maisonneuve E, Ezraty B, Herrmann M, Dukan S.

Int J Med Microbiol. 2011 Apr;301(4):341-6. doi: 10.1016/j.ijmm.2010.10.002.

PMID:
21273120
3.

Senescence of staphylococci: using functional genomics to unravel the roles of ClpC ATPase during late stationary phase.

Chatterjee I, Neumayer D, Herrmann M.

Int J Med Microbiol. 2010 Feb;300(2-3):130-6. doi: 10.1016/j.ijmm.2009.10.004. Review.

PMID:
19931487
4.

Staphylococcus aureus ClpC is required for stress resistance, aconitase activity, growth recovery, and death.

Chatterjee I, Becker P, Grundmeier M, Bischoff M, Somerville GA, Peters G, Sinha B, Harraghy N, Proctor RA, Herrmann M.

J Bacteriol. 2005 Jul;187(13):4488-96.

5.

Transcriptomic and metabolic responses of Staphylococcus aureus exposed to supra-physiological temperatures.

Fleury B, Kelley WL, Lew D, Götz F, Proctor RA, Vaudaux P.

BMC Microbiol. 2009 Apr 22;9:76. doi: 10.1186/1471-2180-9-76.

6.

Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus.

Frees D, Chastanet A, Qazi S, Sørensen K, Hill P, Msadek T, Ingmer H.

Mol Microbiol. 2004 Dec;54(5):1445-62.

7.

Acid-shock responses in Staphylococcus aureus investigated by global gene expression analysis.

Bore E, Langsrud S, Langsrud Ø, Rode TM, Holck A.

Microbiology. 2007 Jul;153(Pt 7):2289-303.

PMID:
17600073
8.
9.
10.

Small colony variants of Staphylococcus aureus reveal distinct protein profiles.

Kriegeskorte A, König S, Sander G, Pirkl A, Mahabir E, Proctor RA, von Eiff C, Peters G, Becker K.

Proteomics. 2011 Jun;11(12):2476-90. doi: 10.1002/pmic.201000796.

PMID:
21595038
11.

Staphylococcus aureus aconitase inactivation unexpectedly inhibits post-exponential-phase growth and enhances stationary-phase survival.

Somerville GA, Chaussee MS, Morgan CI, Fitzgerald JR, Dorward DW, Reitzer LJ, Musser JM.

Infect Immun. 2002 Nov;70(11):6373-82.

12.

Microarray analysis of toxicogenomic effects of triclosan on Staphylococcus aureus.

Jang HJ, Chang MW, Toghrol F, Bentley WE.

Appl Microbiol Biotechnol. 2008 Mar;78(4):695-707. doi: 10.1007/s00253-008-1349-x.

PMID:
18210102
13.

Transcriptomic response of Lactococcus lactis in mixed culture with Staphylococcus aureus.

Nouaille S, Even S, Charlier C, Le Loir Y, Cocaign-Bousquet M, Loubière P.

Appl Environ Microbiol. 2009 Jul;75(13):4473-82. doi: 10.1128/AEM.02653-08.

14.
15.

Global transcriptome analysis of Staphylococcus aureus response to hydrogen peroxide.

Chang W, Small DA, Toghrol F, Bentley WE.

J Bacteriol. 2006 Feb;188(4):1648-59.

16.

Reporter metabolite analysis of transcriptional profiles of a Staphylococcus aureus strain with normal phenotype and its isogenic hemB mutant displaying the small-colony-variant phenotype.

Seggewiss J, Becker K, Kotte O, Eisenacher M, Yazdi MR, Fischer A, McNamara P, Al Laham N, Proctor R, Peters G, Heinemann M, von Eiff C.

J Bacteriol. 2006 Nov;188(22):7765-77.

17.
18.

Effect of a glucose impulse on the CcpA regulon in Staphylococcus aureus.

Seidl K, Müller S, François P, Kriebitzsch C, Schrenzel J, Engelmann S, Bischoff M, Berger-Bächi B.

BMC Microbiol. 2009 May 18;9:95. doi: 10.1186/1471-2180-9-95.

19.

A metabolomics and proteomics study of the adaptation of Staphylococcus aureus to glucose starvation.

Liebeke M, Dörries K, Zühlke D, Bernhardt J, Fuchs S, Pané-Farré J, Engelmann S, Völker U, Bode R, Dandekar T, Lindequist U, Hecker M, Lalk M.

Mol Biosyst. 2011 Apr;7(4):1241-53. doi: 10.1039/c0mb00315h.

PMID:
21327190
20.

Rerouting of pyruvate metabolism during acid adaptation in Lactobacillus bulgaricus.

Fernandez A, Ogawa J, Penaud S, Boudebbouze S, Ehrlich D, van de Guchte M, Maguin E.

Proteomics. 2008 Aug;8(15):3154-63. doi: 10.1002/pmic.200700974.

PMID:
18615427
Items per page

Supplemental Content

Support Center