Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 204

1.

Developmental genetics of floral symmetry evolution.

Preston JC, Hileman LC.

Trends Plant Sci. 2009 Mar;14(3):147-54. doi: 10.1016/j.tplants.2008.12.005. Epub 2009 Feb 21. Review.

PMID:
19231272
2.

Floral zygomorphy, the recurring evolution of a successful trait.

Cubas P.

Bioessays. 2004 Nov;26(11):1175-84. Review.

PMID:
15499590
3.

Conservation and diversification of the symmetry developmental program among close relatives of snapdragon with divergent floral morphologies.

Preston JC, Kost MA, Hileman LC.

New Phytol. 2009;182(3):751-62. doi: 10.1111/j.1469-8137.2009.02794.x. Epub 2009 Mar 9.

4.

Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea (Gesneriaceae).

Zhou XR, Wang YZ, Smith JF, Chen R.

New Phytol. 2008;178(3):532-43. doi: 10.1111/j.1469-8137.2008.02384.x. Epub 2008 Feb 28.

5.
6.

Duplications and expression of DIVARICATA-like genes in dipsacales.

Howarth DG, Donoghue MJ.

Mol Biol Evol. 2009 Jun;26(6):1245-58. doi: 10.1093/molbev/msp051. Epub 2009 Mar 16.

PMID:
19289599
7.
8.

Investigating the independent evolution of the size of floral organs via G-matrix estimation and artificial selection.

Delph LF, Frey FM, Steven JC, Gehring JL.

Evol Dev. 2004 Nov-Dec;6(6):438-48.

PMID:
15509226
9.

Control of petal shape and floral zygomorphy in Lotus japonicus.

Feng X, Zhao Z, Tian Z, Xu S, Luo Y, Cai Z, Wang Y, Yang J, Wang Z, Weng L, Chen J, Zheng L, Guo X, Luo J, Sato S, Tabata S, Ma W, Cao X, Hu X, Sun C, Luo D.

Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4970-5. Epub 2006 Mar 20.

10.
11.

Different outcomes for the MYB floral symmetry genes DIVARICATA and RADIALIS during the evolution of derived actinomorphy in Plantago.

Reardon W, Gallagher P, Nolan KM, Wright H, CardeƱosa-Rubio MC, Bragalini C, Lee CS, Fitzpatrick DA, Corcoran K, Wolff K, Nugent JM.

New Phytol. 2014 Apr;202(2):716-25. doi: 10.1111/nph.12682. Epub 2014 Jan 27.

12.

Diversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae.

Damerval C, Le Guilloux M, Jager M, Charon C.

Plant Physiol. 2007 Feb;143(2):759-72. Epub 2006 Dec 22.

13.

Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances.

Hileman LC.

Philos Trans R Soc Lond B Biol Sci. 2014 Aug 5;369(1648). pii: 20130348. doi: 10.1098/rstb.2013.0348. Review.

14.

Evolution of petal identity.

Irish VF.

J Exp Bot. 2009;60(9):2517-27. doi: 10.1093/jxb/erp159. Epub 2009 May 14. Review.

PMID:
19443615
15.

Evolutionary trends in the flowers of Asteridae: is polyandry an alternative to zygomorphy?

Jabbour F, Damerval C, Nadot S.

Ann Bot. 2008 Aug;102(2):153-65. doi: 10.1093/aob/mcn082. Epub 2008 May 28.

16.

Evolutionary change in flowers and inflorescences: evidence from naturally occurring terata.

Rudall PJ, Bateman RM.

Trends Plant Sci. 2003 Feb;8(2):76-82. Review.

PMID:
12597874
18.

Rapid molecular evolution of CYCLOIDEA-like genes in Antirrhinum and its relatives.

Gubitz T, Caldwell A, Hudson A.

Mol Biol Evol. 2003 Sep;20(9):1537-44. Epub 2003 Jun 27.

PMID:
12832647
19.

Differential regulation of symmetry genes and the evolution of floral morphologies.

Hileman LC, Kramer EM, Baum DA.

Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12814-9. Epub 2003 Oct 10.

20.

A phylogenomic investigation of CYCLOIDEA-like TCP genes in the Leguminosae.

Citerne HL, Luo D, Pennington RT, Coen E, Cronk QC.

Plant Physiol. 2003 Mar;131(3):1042-53.

Supplemental Content

Support Center