Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

McsA and B mediate the delocalization of competence proteins from the cell poles of Bacillus subtilis.

Hahn J, Kramer N, Briley K Jr, Dubnau D.

Mol Microbiol. 2009 Apr;72(1):202-15. doi: 10.1111/j.1365-2958.2009.06636.x. Epub 2009 Feb 17.

2.

The tyrosine kinase McsB is a regulated adaptor protein for ClpCP.

Kirstein J, Dougan DA, Gerth U, Hecker M, Turgay K.

EMBO J. 2007 Apr 18;26(8):2061-70. Epub 2007 Mar 22.

3.

A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in B. subtilis.

Kirstein J, Zühlke D, Gerth U, Turgay K, Hecker M.

EMBO J. 2005 Oct 5;24(19):3435-45. Epub 2005 Sep 15.

4.

Activity control of the ClpC adaptor McsB in Bacillus subtilis.

Elsholz AK, Hempel K, Michalik S, Gronau K, Becher D, Hecker M, Gerth U.

J Bacteriol. 2011 Aug;193(15):3887-93. doi: 10.1128/JB.00079-11. Epub 2011 May 27.

5.

Identification, characterization and activation mechanism of a tyrosine kinase of Bacillus anthracis.

Mattoo AR, Arora A, Maiti S, Singh Y.

FEBS J. 2008 Dec;275(24):6237-47. doi: 10.1111/j.1742-4658.2008.06748.x. Epub 2008 Nov 8.

6.

Transformation proteins and DNA uptake localize to the cell poles in Bacillus subtilis.

Hahn J, Maier B, Haijema BJ, Sheetz M, Dubnau D.

Cell. 2005 Jul 15;122(1):59-71.

7.

Multiple interactions among the competence proteins of Bacillus subtilis.

Kramer N, Hahn J, Dubnau D.

Mol Microbiol. 2007 Jul;65(2):454-64.

8.

CtsR inactivation during thiol-specific stress in low GC, Gram+ bacteria.

Elsholz AK, Hempel K, Pöther DC, Becher D, Hecker M, Gerth U.

Mol Microbiol. 2011 Feb;79(3):772-85. doi: 10.1111/j.1365-2958.2010.07489.x. Epub 2011 Jan 5.

9.

A new tyrosine phosphorylation mechanism involved in signal transduction in Bacillus subtilis.

Kirstein J, Turgay K.

J Mol Microbiol Biotechnol. 2005;9(3-4):182-8. Review.

PMID:
16415591
10.

Roles of the two ClpC ATP binding sites in the regulation of competence and the stress response.

Turgay K, Persuh M, Hahn J, Dubnau D.

Mol Microbiol. 2001 Nov;42(3):717-27.

11.
12.
13.

Structural and motional contributions of the Bacillus subtilis ClpC N-domain to adaptor protein interactions.

Kojetin DJ, McLaughlin PD, Thompson RJ, Dubnau D, Prepiak P, Rance M, Cavanagh J.

J Mol Biol. 2009 Apr 3;387(3):639-52. doi: 10.1016/j.jmb.2009.01.046. Epub 2009 Jan 30.

14.

Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor.

Krüger E, Zühlke D, Witt E, Ludwig H, Hecker M.

EMBO J. 2001 Feb 15;20(4):852-63.

15.

Arginine phosphorylation marks proteins for degradation by a Clp protease.

Trentini DB, Suskiewicz MJ, Heuck A, Kurzbauer R, Deszcz L, Mechtler K, Clausen T.

Nature. 2016 Nov 3;539(7627):48-53. doi: 10.1038/nature20122. Epub 2016 Oct 6.

PMID:
27749819
16.

Polar localization and compartmentalization of ClpP proteases during growth and sporulation in Bacillus subtilis.

Kain J, He GG, Losick R.

J Bacteriol. 2008 Oct;190(20):6749-57. doi: 10.1128/JB.00589-08. Epub 2008 Aug 8.

17.

Involvement of Bacillus subtilis ClpE in CtsR degradation and protein quality control.

Miethke M, Hecker M, Gerth U.

J Bacteriol. 2006 Jul;188(13):4610-9.

18.

MecA, an adaptor protein necessary for ClpC chaperone activity.

Schlothauer T, Mogk A, Dougan DA, Bukau B, Turgay K.

Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2306-11. Epub 2003 Feb 21.

19.

Clp and Lon proteases occupy distinct subcellular positions in Bacillus subtilis.

Simmons LA, Grossman AD, Walker GC.

J Bacteriol. 2008 Oct;190(20):6758-68. doi: 10.1128/JB.00590-08. Epub 2008 Aug 8.

20.

Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival.

Chastanet A, Prudhomme M, Claverys JP, Msadek T.

J Bacteriol. 2001 Dec;183(24):7295-307.

Supplemental Content

Support Center