Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.
2.

Regulation of hyphal morphogenesis by cdc42 and rac1 homologues in Aspergillus nidulans.

Virag A, Lee MP, Si H, Harris SD.

Mol Microbiol. 2007 Dec;66(6):1579-96. Epub 2007 Nov 13.

3.

Cell polarity in filamentous fungi: shaping the mold.

Harris SD.

Int Rev Cytol. 2006;251:41-77. Review.

PMID:
16939777
4.

Cdc42/Rho GTPases in fungi: variations on a common theme.

Harris SD.

Mol Microbiol. 2011 Mar;79(5):1123-7. doi: 10.1111/j.1365-2958.2010.07525.x. Epub 2011 Jan 19.

5.

Golgi organization and the apical extension of fungal hyphae: an essential relationship.

Harris SD.

Mol Microbiol. 2013 Jul;89(2):212-5. doi: 10.1111/mmi.12291. Epub 2013 Jun 20.

6.

CDKs and the yeast-hyphal decision.

Wang Y.

Curr Opin Microbiol. 2009 Dec;12(6):644-9. doi: 10.1016/j.mib.2009.09.002. Review.

PMID:
19837628
7.

The Paxillin-like protein AgPxl1 is required for apical branching and maximal hyphal growth in A.gossypii.

Knechtle P, Kaufmann A, Cavicchioli D, Philippsen P.

Fungal Genet Biol. 2008 Jun;45(6):829-38. doi: 10.1016/j.fgb.2008.03.010. Epub 2008 Mar 25.

PMID:
18448364
8.

Regulation of the Cdc42/Cdc24 GTPase module during Candida albicans hyphal growth.

Bassilana M, Hopkins J, Arkowitz RA.

Eukaryot Cell. 2005 Mar;4(3):588-603.

9.

A role for endocytic recycling in hyphal growth.

Shaw BD, Chung DW, Wang CL, Quintanilla LA, Upadhyay S.

Fungal Biol. 2011 Jun;115(6):541-6. doi: 10.1016/j.funbio.2011.02.010. Epub 2011 Feb 19. Review.

PMID:
21640317
10.

From function to shape: a novel role of a formin in morphogenesis of the fungus Ashbya gossypii.

Schmitz HP, Kaufmann A, Köhli M, Laissue PP, Philippsen P.

Mol Biol Cell. 2006 Jan;17(1):130-45. Epub 2005 Oct 19.

11.

Key differences between lateral and apical branching in hyphae of Neurospora crassa.

Riquelme M, Bartnicki-Garcia S.

Fungal Genet Biol. 2004 Sep;41(9):842-51.

PMID:
15288020
12.

Phosphorylation of Rga2, a Cdc42 GAP, by CDK/Hgc1 is crucial for Candida albicans hyphal growth.

Zheng XD, Lee RT, Wang YM, Lin QS, Wang Y.

EMBO J. 2007 Aug 22;26(16):3760-9. Epub 2007 Aug 2.

13.

Reconstruction of signaling networks regulating fungal morphogenesis by transcriptomics.

Meyer V, Arentshorst M, Flitter SJ, Nitsche BM, Kwon MJ, Reynaga-Peña CG, Bartnicki-Garcia S, van den Hondel CA, Ram AF.

Eukaryot Cell. 2009 Nov;8(11):1677-91. doi: 10.1128/EC.00050-09. Epub 2009 Sep 11.

14.

Candida albicans hyphal morphogenesis occurs in Sec3p-independent and Sec3p-dependent phases separated by septin ring formation.

Li CR, Lee RT, Wang YM, Zheng XD, Wang Y.

J Cell Sci. 2007 Jun 1;120(Pt 11):1898-907. Epub 2007 May 15.

15.

Simulating colonial growth of fungi with the Neighbour-Sensing model of hyphal growth.

Meskauskas A, Fricker MD, Moore D.

Mycol Res. 2004 Nov;108(Pt 11):1241-56.

PMID:
15587058
16.

Polarity in filamentous fungi: establishment, maintenance and new axes.

Momany M.

Curr Opin Microbiol. 2002 Dec;5(6):580-5. Review.

PMID:
12457701
17.

Fluorescent proteins illuminate the structure and function of the hyphal tip apparatus.

Sudbery P.

Fungal Genet Biol. 2011 Sep;48(9):849-57. doi: 10.1016/j.fgb.2011.02.004. Epub 2011 Mar 22. Review.

PMID:
21362491
19.

Regulation of apical dominance in Aspergillus nidulans hyphae by reactive oxygen species.

Semighini CP, Harris SD.

Genetics. 2008 Aug;179(4):1919-32. doi: 10.1534/genetics.108.089318. Epub 2008 Aug 9.

20.

Comparison of gene expression in trap cells and vegetative hyphae of the nematophagous fungus Monacrosporium haptotylum.

Ahrén D, Tholander M, Fekete C, Rajashekar B, Friman E, Johansson T, Tunlid A.

Microbiology. 2005 Mar;151(Pt 3):789-803.

PMID:
15758225

Supplemental Content

Support Center