Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 157

1.

Hydrolysis of fenamiphos and its toxic oxidation products by Microbacterium sp. in pure culture and groundwater.

Cáceres TP, Megharaj M, Malik S, Beer M, Naidu R.

Bioresour Technol. 2009 May;100(10):2732-6. doi: 10.1016/j.biortech.2008.12.043. Epub 2009 Feb 4.

PMID:
19195880
2.

Hydrolysis of fenamiphos and its oxidation products by a soil bacterium in pure culture, soil and water.

Megharaj M, Singh N, Kookana RS, Naidu R, Sethunathan N.

Appl Microbiol Biotechnol. 2003 May;61(3):252-6. Epub 2003 Feb 26.

PMID:
12698284
3.

Toxicity and transformation of fenamiphos and its metabolites by two micro algae Pseudokirchneriella subcapitata and Chlorococcum sp.

Cáceres T, Megharaj M, Naidu R.

Sci Total Environ. 2008 Jul 15;398(1-3):53-9. doi: 10.1016/j.scitotenv.2008.03.022. Epub 2008 May 2.

PMID:
18452972
4.
5.

Bioavailability of an organophosphorus pesticide, fenamiphos, sorbed on an organo clay.

Singh N, Megharaj M, Gates WP, Churchman GJ, Anderson J, Kookana RS, Naidu R, Chen Z, Slade PG, Sethunathan N.

J Agric Food Chem. 2003 Apr 23;51(9):2653-8.

PMID:
12696953
6.

Biodegradation of the pesticide fenamiphos by ten different species of green algae and cyanobacteria.

Cáceres TP, Megharaj M, Naidu R.

Curr Microbiol. 2008 Dec;57(6):643-6. doi: 10.1007/s00284-008-9293-7. Epub 2008 Oct 16.

PMID:
18923866
7.

Fenamiphos and related organophosphorus pesticides: environmental fate and toxicology.

Cáceres T, Megharaj M, Venkateswarlu K, Sethunathan N, Naidu R.

Rev Environ Contam Toxicol. 2010;205:117-62. doi: 10.1007/978-1-4419-5623-1_3. Review.

PMID:
20044796
8.

Degradation of fenamiphos in soils collected from different geographical regions: the influence of soil properties and climatic conditions.

Cáceres T, Megharaj M, Naidu R.

J Environ Sci Health B. 2008 May;43(4):314-22. doi: 10.1080/03601230801941659.

PMID:
18437619
9.

Sorption of fenamiphos to different soils: the influence of soil properties.

Cáceres TP, Megharaj M, Naidu R.

J Environ Sci Health B. 2008 Sep;43(7):605-10. doi: 10.1080/03601230802234690.

PMID:
18803115
10.

Isolation and characterization of fenamiphos degrading bacteria.

Cabrera JA, Kurtz A, Sikora RA, Schouten A.

Biodegradation. 2010 Nov;21(6):1017-27. doi: 10.1007/s10532-010-9362-z. Epub 2010 May 13.

PMID:
20464454
11.

Effect of insecticide fenamiphos on soil microbial activities in Australian and Ecuadorean soils.

Cáceres TP, He W, Megharaj M, Naidu R.

J Environ Sci Health B. 2009 Jan;44(1):13-7. doi: 10.1080/03601230802519504.

PMID:
19089710
12.
13.

Probing the stereochemistry of successive sulfoxidation of the insecticide fenamiphos in soils.

Cai X, Xiong W, Xia T, Chen J.

Environ Sci Technol. 2014 Oct 7;48(19):11277-85. doi: 10.1021/es502834v. Epub 2014 Sep 9.

PMID:
25162486
14.
15.

Use of starch and potato peel waste for perchlorate bioreduction in water.

Okeke BC, Frankenberger WT Jr.

Sci Total Environ. 2005 Jul 15;347(1-3):35-45.

PMID:
16084965
16.

Bacterial reduction of fensulfothion and its hydrolysis product 4-methylsulfinyl phenol.

Mac Rae IC, Cameron AJ.

Appl Environ Microbiol. 1985 Jan;49(1):236-7.

17.

Separation, bioactivity, and dissipation of enantiomers of the organophosphorus insecticide fenamiphos.

Wang YS, Tai KT, Yen JH.

Ecotoxicol Environ Saf. 2004 Mar;57(3):346-53.

PMID:
15041257
18.

Removal of atrazine and four organophosphorus pesticides from environmental waters by diatomaceous earth-remediation method.

Agdi K, Bouaid A, Esteban AM, Hernando PF, Azmani A, Camara C.

J Environ Monit. 2000 Oct;2(5):420-3.

PMID:
11254043
19.

Availability of fenamiphos and its metabolites to soil water.

Davis RF, Wauchope RD, Johnson AW.

J Nematol. 1994 Dec;26(4):511-7.

20.

Removal of arsenic from groundwater by arsenite-oxidizing bacteria.

Ike M, Miyazaki T, Yamamoto N, Sei K, Soda S.

Water Sci Technol. 2008;58(5):1095-100. doi: 10.2166/wst.2008.462.

PMID:
18824809

Supplemental Content

Support Center