Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 139

1.

Increased operant responding for ethanol in male C57BL/6J mice: specific regulation by the ERK1/2, but not JNK, MAP kinase pathway.

Faccidomo S, Besheer J, Stanford PC, Hodge CW.

Psychopharmacology (Berl). 2009 May;204(1):135-47. doi: 10.1007/s00213-008-1444-9.

4.
6.
7.

Alcohol alters the activation of ERK1/2, a functional regulator of binge alcohol drinking in adult C57BL/6J mice.

Agoglia AE, Sharko AC, Psilos KE, Holstein SE, Reid GT, Hodge CW.

Alcohol Clin Exp Res. 2015 Mar;39(3):463-75. doi: 10.1111/acer.12645.

8.

The mGluR5 antagonist MPEP selectively inhibits the onset and maintenance of ethanol self-administration in C57BL/6J mice.

Hodge CW, Miles MF, Sharko AC, Stevenson RA, Hillmann JR, Lepoutre V, Besheer J, Schroeder JP.

Psychopharmacology (Berl). 2006 Jan;183(4):429-38.

9.

Metabotropic glutamate receptor 5 activity in the nucleus accumbens is required for the maintenance of ethanol self-administration in a rat genetic model of high alcohol intake.

Besheer J, Grondin JJ, Cannady R, Sharko AC, Faccidomo S, Hodge CW.

Biol Psychiatry. 2010 May 1;67(9):812-22. doi: 10.1016/j.biopsych.2009.09.016.

10.

Oral operant ethanol self-administration in the absence of explicit cues, food restriction, water restriction and ethanol fading in C57BL/6J mice.

Stafford AM, Anderson SM, Shelton KL, Brunzell DH.

Psychopharmacology (Berl). 2015 Oct;232(20):3783-95. doi: 10.1007/s00213-015-4040-9.

11.

Long-Evans rats acquire operant self-administration of 20% ethanol without sucrose fading.

Simms JA, Bito-Onon JJ, Chatterjee S, Bartlett SE.

Neuropsychopharmacology. 2010 Jun;35(7):1453-63. doi: 10.1038/npp.2010.15.

12.

Nonselective suppression of operant ethanol and sucrose self-administration by the mGluR7 positive allosteric modulator AMN082.

Salling MC, Faccidomo S, Hodge CW.

Pharmacol Biochem Behav. 2008 Nov;91(1):14-20. doi: 10.1016/j.pbb.2008.06.006.

13.

The alcohol deprivation effect in C57BL/6J mice is observed using operant self-administration procedures and is modulated by CRF-1 receptor signaling.

Sparta DR, Ferraro FM 3rd, Fee JR, Knapp DJ, Breese GR, Thiele TE.

Alcohol Clin Exp Res. 2009 Jan;33(1):31-42. doi: 10.1111/j.1530-0277.2008.00808.x.

14.

Effects of alcohol and saccharin deprivations on concurrent ethanol and saccharin operant self-administration by alcohol-preferring (P) rats.

Toalston JE, Oster SM, Kuc KA, Pommer TJ, Murphy JM, Lumeng L, Bell RL, McBride WJ, Rodd ZA.

Alcohol. 2008 Jun;42(4):277-84. doi: 10.1016/j.alcohol.2008.01.011.

15.

Wistar rats acquire and maintain self-administration of 20 % ethanol without water deprivation, saccharin/sucrose fading, or extended access training.

Augier E, Flanigan M, Dulman RS, Pincus A, Schank JR, Rice KC, Kejun C, Heilig M, Tapocik JD.

Psychopharmacology (Berl). 2014 Dec;231(23):4561-8. doi: 10.1007/s00213-014-3605-3.

16.

Effects of repeated alcohol deprivations on operant ethanol self-administration by alcohol-preferring (P) rats.

Rodd ZA, Bell RL, Kuc KA, Murphy JM, Lumeng L, Li TK, McBride WJ.

Neuropsychopharmacology. 2003 Sep;28(9):1614-21.

17.

Administration of MDMA to ethanol-deprived rats increases ethanol operant self-administration and dopamine release during reinstatement.

Moreno-Sanz G, O'Shea E, Orio L, Escobedo I, González-Cuevas G, Navarro M, Colado MI, López-Moreno JA.

Int J Neuropsychopharmacol. 2009 Aug;12(7):929-40. doi: 10.1017/S1461145709009912.

PMID:
19236733
18.
19.
Items per page

Supplemental Content

Support Center