Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 198

2.

Effective population size and the efficacy of selection on the X chromosomes of two closely related Drosophila species.

Andolfatto P, Wong KM, Bachtrog D.

Genome Biol Evol. 2011;3:114-28. doi: 10.1093/gbe/evq086. Epub 2010 Dec 20.

3.

Estimating the parameters of selection on nonsynonymous mutations in Drosophila pseudoobscura and D. miranda.

Haddrill PR, Loewe L, Charlesworth B.

Genetics. 2010 Aug;185(4):1381-96. doi: 10.1534/genetics.110.117614. Epub 2010 Jun 1.

4.
5.

Hitchhiking effects of recurrent beneficial amino acid substitutions in the Drosophila melanogaster genome.

Andolfatto P.

Genome Res. 2007 Dec;17(12):1755-62. Epub 2007 Nov 7. Erratum in: Genome Res. 2008 Jan;18(1):197.

6.

The evolution of small insertions and deletions in the coding genes of Drosophila melanogaster.

Chong Z, Zhai W, Li C, Gao M, Gong Q, Ruan J, Li J, Jiang L, Lv X, Hungate E, Wu CI.

Mol Biol Evol. 2013 Dec;30(12):2699-708. doi: 10.1093/molbev/mst167. Epub 2013 Sep 26.

PMID:
24077769
7.

Characterizing the influence of effective population size on the rate of adaptation: Gillespie's Darwin domain.

Jensen JD, Bachtrog D.

Genome Biol Evol. 2011;3:687-701. doi: 10.1093/gbe/evr063. Epub 2011 Jun 24.

8.

Characterizing recurrent positive selection at fast-evolving genes in Drosophila miranda and Drosophila pseudoobscura.

Jensen JD, Bachtrog D.

Genome Biol Evol. 2010 Jul 12;2:371-8. doi: 10.1093/gbe/evq028.

10.

Adaptive protein evolution of X-linked and autosomal genes in Drosophila: implications for faster-X hypotheses.

Connallon T.

Mol Biol Evol. 2007 Nov;24(11):2566-72. Epub 2007 Sep 19.

PMID:
17884828
11.

Prevalence of positive selection among nearly neutral amino acid replacements in Drosophila.

Sawyer SA, Parsch J, Zhang Z, Hartl DL.

Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6504-10. Epub 2007 Apr 4.

12.

Polymorphism and divergence at the prune locus in Drosophila melanogaster and D. simulans.

Simmons GM, Kwok W, Matulonis P, Venkatesh T.

Mol Biol Evol. 1994 Jul;11(4):666-71.

PMID:
8078405
13.

Bayesian analysis suggests that most amino acid replacements in Drosophila are driven by positive selection.

Sawyer SA, Kulathinal RJ, Bustamante CD, Hartl DL.

J Mol Evol. 2003;57 Suppl 1:S154-64.

PMID:
15008412
15.

Differential strengths of positive selection revealed by hitchhiking effects at small physical scales in Drosophila melanogaster.

Lee YC, Langley CH, Begun DJ.

Mol Biol Evol. 2014 Apr;31(4):804-16. doi: 10.1093/molbev/mst270. Epub 2013 Dec 20.

16.

Estimating the genomewide rate of adaptive protein evolution in Drosophila.

Welch JJ.

Genetics. 2006 Jun;173(2):821-37. Epub 2006 Apr 2.

17.

X chromosomes and autosomes evolve at similar rates in Drosophila: no evidence for faster-X protein evolution.

Thornton K, Bachtrog D, Andolfatto P.

Genome Res. 2006 Apr;16(4):498-504. Epub 2006 Mar 6.

18.

The genomic rate of adaptive amino acid substitution in Drosophila.

Bierne N, Eyre-Walker A.

Mol Biol Evol. 2004 Jul;21(7):1350-60. Epub 2004 Mar 24.

PMID:
15044594
19.

Rapid evolution and gene-specific patterns of selection for three genes of spermatogenesis in Drosophila.

Civetta A, Rajakumar SA, Brouwers B, Bacik JP.

Mol Biol Evol. 2006 Mar;23(3):655-62. Epub 2005 Dec 15.

PMID:
16357040
20.

Changes in the recombinational environment affect divergence in the yellow gene of Drosophila.

Munte A, Aguade M, Segarra C.

Mol Biol Evol. 2001 Jun;18(6):1045-56.

PMID:
11371593

Supplemental Content

Support Center