Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways.

Shao Z, Zhao H, Zhao H.

Nucleic Acids Res. 2009 Feb;37(2):e16. doi: 10.1093/nar/gkn991. Epub 2008 Dec 12.

2.

Construction and engineering of large biochemical pathways via DNA assembler.

Shao Z, Zhao H.

Methods Mol Biol. 2013;1073:85-106. doi: 10.1007/978-1-62703-625-2_9.

3.

DNA assembler method for construction of zeaxanthin-producing strains of Saccharomyces cerevisiae.

Shao Z, Luo Y, Zhao H.

Methods Mol Biol. 2012;898:251-62. doi: 10.1007/978-1-61779-918-1_17.

4.

Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler.

Shao Z, Luo Y, Zhao H.

Mol Biosyst. 2011 Apr;7(4):1056-9. doi: 10.1039/c0mb00338g. Epub 2011 Feb 16.

5.

Flexible and Versatile Strategy for the Construction of Large Biochemical Pathways.

Yuan Y, Andersen E, Zhao H.

ACS Synth Biol. 2016 Jan 15;5(1):46-52. doi: 10.1021/acssynbio.5b00117. Epub 2015 Sep 9.

PMID:
26332374
6.

Assembly of long DNA sequences using a new synthetic Escherichia coli-yeast shuttle vector.

Hou Z, Zhou Z, Wang Z, Xiao G.

Virol Sin. 2016 Apr;31(2):160-7. doi: 10.1007/s12250-016-3730-8. Epub 2016 Apr 11.

PMID:
27113243
7.

Recombination-mediated PCR-directed plasmid construction in vivo in yeast.

Oldenburg KR, Vo KT, Michaelis S, Paddon C.

Nucleic Acids Res. 1997 Jan 15;25(2):451-2.

8.

A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences.

Kuijpers NG, Solis-Escalante D, Bosman L, van den Broek M, Pronk JT, Daran JM, Daran-Lapujade P.

Microb Cell Fact. 2013 May 10;12:47. doi: 10.1186/1475-2859-12-47.

9.

RADOM, an efficient in vivo method for assembling designed DNA fragments up to 10 kb long in Saccharomyces cerevisiae.

Lin Q, Jia B, Mitchell LA, Luo J, Yang K, Zeller KI, Zhang W, Xu Z, Stracquadanio G, Bader JS, Boeke JD, Yuan YJ.

ACS Synth Biol. 2015 Mar 20;4(3):213-20. doi: 10.1021/sb500241e. Epub 2014 Jun 4.

PMID:
24895839
10.

Coordinated induction of multi-gene pathways in Saccharomyces cerevisiae.

Liang J, Ning JC, Zhao H.

Nucleic Acids Res. 2013 Feb 1;41(4):e54. doi: 10.1093/nar/gks1293. Epub 2012 Dec 22.

11.

Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology.

Kouprina N, Larionov V.

Chromosoma. 2016 Sep;125(4):621-32. doi: 10.1007/s00412-016-0588-3. Epub 2016 Apr 26. Review.

12.

Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR.

Tsai CS, Kong II, Lesmana A, Million G, Zhang GC, Kim SR, Jin YS.

Biotechnol Bioeng. 2015 Nov;112(11):2406-11. doi: 10.1002/bit.25632. Epub 2015 Jun 30.

PMID:
25943337
13.

Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination.

Colloms SD, Merrick CA, Olorunniji FJ, Stark WM, Smith MC, Osbourn A, Keasling JD, Rosser SJ.

Nucleic Acids Res. 2014 Feb;42(4):e23. doi: 10.1093/nar/gkt1101. Epub 2013 Nov 12.

14.

Process for Assembly and Transformation into Saccharomyces cerevisiae of a Synthetic Yeast Artificial Chromosome Containing a Multigene Cassette to Express Enzymes That Enhance Xylose Utilization Designed for an Automated Platform.

Hughes SR, Cox EJ, Bang SS, Pinkelman RJ, López-Núñez JC, Saha BC, Qureshi N, Gibbons WR, Fry MR, Moser BR, Bischoff KM, Liu S, Sterner DE, Butt TR, Riedmuller SB, Jones MA, Riaño-Herrera NM.

J Lab Autom. 2015 Dec;20(6):621-35. doi: 10.1177/2211068215573188. Epub 2015 Feb 26.

PMID:
25720598
15.

In vitro assembly of multiple DNA fragments using successive hybridization.

Jiang X, Yang J, Zhang H, Zou H, Wang C, Xian M.

PLoS One. 2012;7(1):e30267. doi: 10.1371/journal.pone.0030267. Epub 2012 Jan 26.

16.

Customized optimization of metabolic pathways by combinatorial transcriptional engineering.

Yuan Y, Du J, Zhao H.

Methods Mol Biol. 2013;985:177-209. doi: 10.1007/978-1-62703-299-5_10.

PMID:
23417805
17.

Combinatorial assembly of large biochemical pathways into yeast chromosomes for improved production of value-added compounds.

Yuan J, Ching CB.

ACS Synth Biol. 2015 Jan 16;4(1):23-31. doi: 10.1021/sb500079f. Epub 2014 May 28.

PMID:
24847678
18.

Assembling large DNA segments in yeast.

Muller H, Annaluru N, Schwerzmann JW, Richardson SM, Dymond JS, Cooper EM, Bader JS, Boeke JD, Chandrasegaran S.

Methods Mol Biol. 2012;852:133-50. doi: 10.1007/978-1-61779-564-0_11.

PMID:
22328431
19.

A genetic system for direct selection of gene-positive clones during recombinational cloning in yeast.

Noskov V, Kouprina N, Leem SH, Koriabine M, Barrett JC, Larionov V.

Nucleic Acids Res. 2002 Jan 15;30(2):E8.

20.

A versatile bacterial expression vector designed for single-step cloning of multiple DNA fragments using homologous recombination.

Holmberg MA, Gowda NK, Andréasson C.

Protein Expr Purif. 2014 Jun;98:38-45. doi: 10.1016/j.pep.2014.03.002. Epub 2014 Mar 12.

PMID:
24631626

Supplemental Content

Support Center