Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 313

1.

Wide-field optical coherence tomography of the choroid in vivo.

Povazay B, Hermann B, Hofer B, Kajić V, Simpson E, Bridgford T, Drexler W.

Invest Ophthalmol Vis Sci. 2009 Apr;50(4):1856-63. doi: 10.1167/iovs.08-2869.

PMID:
19060289
2.

In vivo human choroidal vascular pattern visualization using high-speed swept-source optical coherence tomography at 1060 nm.

Motaghiannezam R, Schwartz DM, Fraser SE.

Invest Ophthalmol Vis Sci. 2012 Apr 30;53(4):2337-48. doi: 10.1167/iovs.11-7823.

PMID:
22410568
3.

Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography.

Povazay B, Hofer B, Torti C, Hermann B, Tumlinson AR, Esmaeelpour M, Egan CA, Bird AC, Drexler W.

Opt Express. 2009 Mar 2;17(5):4134-50.

PMID:
19259251
4.

Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma.

Inoue R, Hangai M, Kotera Y, Nakanishi H, Mori S, Morishita S, Yoshimura N.

Ophthalmology. 2009 Feb;116(2):214-22. doi: 10.1016/j.ophtha.2008.09.008.

PMID:
19091413
5.

Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography.

Kurokawa K, Sasaki K, Makita S, Yamanari M, Cense B, Yasuno Y.

Opt Express. 2010 Apr 12;18(8):8515-27. doi: 10.1364/OE.18.008515.

PMID:
20588698
6.

Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography.

Grieve K, Paques M, Dubois A, Sahel J, Boccara C, Le Gargasson JF.

Invest Ophthalmol Vis Sci. 2004 Nov;45(11):4126-31.

PMID:
15505065
7.

Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients.

Povazay B, Hermann B, Unterhuber A, Hofer B, Sattmann H, Zeiler F, Morgan JE, Falkner-Radler C, Glittenberg C, Blinder S, Drexler W.

J Biomed Opt. 2007 Jul-Aug;12(4):041211.

PMID:
17867800
8.

Phase-contrast OCT imaging of transverse flows in the mouse retina and choroid.

Fingler J, Readhead C, Schwartz DM, Fraser SE.

Invest Ophthalmol Vis Sci. 2008 Nov;49(11):5055-9. doi: 10.1167/iovs.07-1627.

PMID:
18566457
9.

Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head.

Srinivasan VJ, Adler DC, Chen Y, Gorczynska I, Huber R, Duker JS, Schuman JS, Fujimoto JG.

Invest Ophthalmol Vis Sci. 2008 Nov;49(11):5103-10. doi: 10.1167/iovs.08-2127.

10.

High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region.

Puvanathasan P, Forbes P, Ren Z, Malchow D, Boyd S, Bizheva K.

Opt Lett. 2008 Nov 1;33(21):2479-81.

PMID:
18978893
12.

Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients.

Esmaeelpour M, Povazay B, Hermann B, Hofer B, Kajic V, Kapoor K, Sheen NJ, North RV, Drexler W.

Invest Ophthalmol Vis Sci. 2010 Oct;51(10):5260-6. doi: 10.1167/iovs.10-5196.

PMID:
20445110
13.

Choroid, Haller's, and Sattler's layer thickness in intermediate age-related macular degeneration with and without fellow neovascular eyes.

Esmaeelpour M, Ansari-Shahrezaei S, Glittenberg C, Nemetz S, Kraus MF, Hornegger J, Fujimoto JG, Drexler W, Binder S.

Invest Ophthalmol Vis Sci. 2014 Jul 22;55(8):5074-80. doi: 10.1167/iovs.14-14646.

14.

In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography.

Yasuno Y, Hong Y, Makita S, Yamanari M, Akiba M, Miura M, Yatagai T.

Opt Express. 2007 May 14;15(10):6121-39.

PMID:
19546917
15.

Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser.

Klein T, Wieser W, Eigenwillig CM, Biedermann BR, Huber R.

Opt Express. 2011 Feb 14;19(4):3044-62. doi: 10.1364/OE.19.003044.

PMID:
21369128
16.

Retinal polarization-sensitive optical coherence tomography at 1060 nm with 350 kHz A-scan rate using an Fourier domain mode locked laser.

Torzicky T, Marschall S, Pircher M, Baumann B, Bonesi M, Zotter S, Götzinger E, Trasischker W, Klein T, Wieser W, Biedermann B, Huber R, Andersen P, Hitzenberger CK.

J Biomed Opt. 2013 Feb;18(2):26008. doi: 10.1117/1.JBO.18.2.026008.

PMID:
23377007
17.

In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography.

Ruggeri M, Wehbe H, Jiao S, Gregori G, Jockovich ME, Hackam A, Duan Y, Puliafito CA.

Invest Ophthalmol Vis Sci. 2007 Apr;48(4):1808-14.

PMID:
17389515
18.
19.

Automated retinal shadow compensation of optical coherence tomography images.

Fabritius T, Makita S, Hong Y, Myllylä R, Yasuno Y.

J Biomed Opt. 2009 Jan-Feb;14(1):010503. doi: 10.1117/1.3076204.

PMID:
19256685
20.

Ophthalmic imaging by spectral optical coherence tomography.

Wojtkowski M, Bajraszewski T, Gorczyńska I, Targowski P, Kowalczyk A, Wasilewski W, Radzewicz C.

Am J Ophthalmol. 2004 Sep;138(3):412-9.

PMID:
15364223

Supplemental Content

Support Center