Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

Effects of cyclooxygenase-2 gene inactivation on cardiac autonomic and left ventricular function in experimental diabetes.

Kellogg AP, Converso K, Wiggin T, Stevens M, Pop-Busui R.

Am J Physiol Heart Circ Physiol. 2009 Feb;296(2):H453-61. doi: 10.1152/ajpheart.00678.2008. Epub 2008 Dec 5.

2.

Protective effects of cyclooxygenase-2 gene inactivation against peripheral nerve dysfunction and intraepidermal nerve fiber loss in experimental diabetes.

Kellogg AP, Wiggin TD, Larkin DD, Hayes JM, Stevens MJ, Pop-Busui R.

Diabetes. 2007 Dec;56(12):2997-3005. Epub 2007 Aug 24.

3.

Peripheral nerve dysfunction in experimental diabetes is mediated by cyclooxygenase-2 and oxidative stress.

Kellogg AP, Pop-Busui R.

Antioxid Redox Signal. 2005 Nov-Dec;7(11-12):1521-9.

5.

Phosphoinositide 3-kinase (p110α) gene delivery limits diabetes-induced cardiac NADPH oxidase and cardiomyopathy in a mouse model with established diastolic dysfunction.

Prakoso D, De Blasio MJ, Qin C, Rosli S, Kiriazis H, Qian H, Du XJ, Weeks KL, Gregorevic P, McMullen JR, Ritchie RH.

Clin Sci (Lond). 2017 Jun 7;131(12):1345-1360. doi: 10.1042/CS20170063. Print 2017 Jun 1.

PMID:
28487469
6.

Erythropoietin attenuates cardiac dysfunction by increasing myocardial angiogenesis and inhibiting interstitial fibrosis in diabetic rats.

Lu J, Yao YY, Dai QM, Ma GS, Zhang SF, Cao L, Ren LQ, Liu NF.

Cardiovasc Diabetol. 2012 Sep 7;11:105. doi: 10.1186/1475-2840-11-105.

7.

Selective inhibition of the master regulator transcription factor Egr-1 with catalytic oligonucleotides reduces myocardial injury and improves left ventricular systolic function in a preclinical model of myocardial infarction.

Rayner BS, Figtree GA, Sabaretnam T, Shang P, Mazhar J, Weaver JC, Lay WN, Witting PK, Hunyor SN, Grieve SM, Khachigian LM, Bhindi R.

J Am Heart Assoc. 2013 Jul 31;2(4):e000023. doi: 10.1161/JAHA.113.000023.

8.

Effects of renal denervation on cardiac oxidative stress and local activity of the sympathetic nervous system and renin-angiotensin system in acute myocardial infracted dogs.

Feng Q, Lu C, Wang L, Song L, Li C, Uppada RC.

BMC Cardiovasc Disord. 2017 Feb 17;17(1):65. doi: 10.1186/s12872-017-0498-1.

9.

Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunction in a rat model of insulin resistance with hyperglycemia.

Thackeray JT, Radziuk J, Harper ME, Suuronen EJ, Ascah KJ, Beanlands RS, Dasilva JN.

Cardiovasc Diabetol. 2011 Aug 10;10:75. doi: 10.1186/1475-2840-10-75.

10.

Glucagon-like peptide-1 protects against ischemic left ventricular dysfunction during hyperglycemia in patients with coronary artery disease and type 2 diabetes mellitus.

McCormick LM, Heck PM, Ring LS, Kydd AC, Clarke SJ, Hoole SP, Dutka DP.

Cardiovasc Diabetol. 2015 Aug 8;14:102. doi: 10.1186/s12933-015-0259-3.

11.

Therapeutic targeting of oxidative stress with coenzyme Q10 counteracts exaggerated diabetic cardiomyopathy in a mouse model of diabetes with diminished PI3K(p110α) signaling.

De Blasio MJ, Huynh K, Qin C, Rosli S, Kiriazis H, Ayer A, Cemerlang N, Stocker R, Du XJ, McMullen JR, Ritchie RH.

Free Radic Biol Med. 2015 Oct;87:137-47. doi: 10.1016/j.freeradbiomed.2015.04.028. Epub 2015 Apr 30.

PMID:
25937176
12.

Tempol prevents cardiac oxidative damage and left ventricular dysfunction in the PPAR-α KO mouse.

Guellich A, Damy T, Conti M, Claes V, Samuel JL, Pineau T, Lecarpentier Y, Coirault C.

Am J Physiol Heart Circ Physiol. 2013 Jun 1;304(11):H1505-12. doi: 10.1152/ajpheart.00669.2012. Epub 2013 Mar 29.

13.

Left ventricular pressure-volume measurements and myocardial gene expression profile in type 2 diabetic Goto-Kakizaki rats.

Korkmaz-Icöz S, Lehner A, Li S, Vater A, Radovits T, Brune M, Ruppert M, Sun X, Brlecic P, Zorn M, Karck M, Szabó G.

Am J Physiol Heart Circ Physiol. 2016 Oct 1;311(4):H958-H971. doi: 10.1152/ajpheart.00956.2015. Epub 2016 Aug 12.

14.

Changes in diastolic function and collagen content in normotensive and hypertensive rats with long-term streptozotocin-induced diabetes.

Riva E, Andreoni G, Bianchi R, Latini R, Luvarà G, Jeremic G, Traquandi C, Tuccinardi L.

Pharmacol Res. 1998 Mar;37(3):233-40.

PMID:
9602473
15.

Chronic administration of the nitroxyl donor 1-nitrosocyclo hexyl acetate limits left ventricular diastolic dysfunction in a mouse model of diabetes mellitus in vivo.

Cao N, Wong YG, Rosli S, Kiriazis H, Huynh K, Qin C, Du XJ, Kemp-Harper BK, Ritchie RH.

Circ Heart Fail. 2015 May;8(3):572-81. doi: 10.1161/CIRCHEARTFAILURE.114.001699. Epub 2015 Mar 3.

16.

Inhibition of aldehyde dehydrogenase 2 by oxidative stress is associated with cardiac dysfunction in diabetic rats.

Wang J, Wang H, Hao P, Xue L, Wei S, Zhang Y, Chen Y.

Mol Med. 2011 Mar-Apr;17(3-4):172-9. doi: 10.2119/molmed.2010.00114. Epub 2010 Oct 15.

17.

Association of cardiac autonomic neuropathy with subclinical myocardial dysfunction in type 2 diabetes.

Sacre JW, Franjic B, Jellis CL, Jenkins C, Coombes JS, Marwick TH.

JACC Cardiovasc Imaging. 2010 Dec;3(12):1207-15. doi: 10.1016/j.jcmg.2010.09.014.

18.

Apolipoprotein A-I mimetic peptide L-4F prevents myocardial and coronary dysfunction in diabetic mice.

Vecoli C, Cao J, Neglia D, Inoue K, Sodhi K, Vanella L, Gabrielson KK, Bedja D, Paolocci N, L'abbate A, Abraham NG.

J Cell Biochem. 2011 Sep;112(9):2616-26. doi: 10.1002/jcb.23188.

19.

Overexpression of human C-reactive protein exacerbates left ventricular remodeling in diabetic cardiomyopathy.

Mano Y, Anzai T, Kaneko H, Nagatomo Y, Nagai T, Anzai A, Maekawa Y, Takahashi T, Meguro T, Yoshikawa T, Fukuda K.

Circ J. 2011;75(7):1717-27. Epub 2011 Apr 26.

20.

Early epirubicin-induced myocardial dysfunction revealed by serial tissue Doppler echocardiography: correlation with inflammatory and oxidative stress markers.

Mercuro G, Cadeddu C, Piras A, Dessì M, Madeddu C, Deidda M, Serpe R, Massa E, Mantovani G.

Oncologist. 2007 Sep;12(9):1124-33.

Supplemental Content

Support Center