Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 221

1.

Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae.

Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H.

FEMS Yeast Res. 2009 Feb;9(1):32-44. doi: 10.1111/j.1567-1364.2008.00456.x. Epub 2008 Nov 13.

2.

Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis.

Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S.

J Biotechnol. 2007 Aug 1;131(1):34-44. Epub 2007 May 24.

PMID:
17604866
3.

Comprehensive phenotypic analysis of single-gene deletion and overexpression strains of Saccharomyces cerevisiae.

Yoshikawa K, Tanaka T, Ida Y, Furusawa C, Hirasawa T, Shimizu H.

Yeast. 2011 May;28(5):349-61. doi: 10.1002/yea.1843. Epub 2011 Feb 22.

4.

Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae.

Auesukaree C, Damnernsawad A, Kruatrachue M, Pokethitiyook P, Boonchird C, Kaneko Y, Harashima S.

J Appl Genet. 2009;50(3):301-10. doi: 10.1007/BF03195688.

PMID:
19638689
5.

Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray.

Dinh TN, Nagahisa K, Yoshikawa K, Hirasawa T, Furusawa C, Shimizu H.

Bioprocess Biosyst Eng. 2009 Aug;32(5):681-8. doi: 10.1007/s00449-008-0292-7. Epub 2009 Jan 6.

PMID:
19125301
7.

Acetaldehyde tolerance in Saccharomyces cerevisiae involves the pentose phosphate pathway and oleic acid biosynthesis.

Matsufuji Y, Fujimura S, Ito T, Nishizawa M, Miyaji T, Nakagawa J, Ohyama T, Tomizuka N, Nakagawa T.

Yeast. 2008 Nov;25(11):825-33. doi: 10.1002/yea.1637.

8.

Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress.

van Voorst F, Houghton-Larsen J, Jønson L, Kielland-Brandt MC, Brandt A.

Yeast. 2006 Apr 15;23(5):351-9.

9.
10.
11.

Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae.

Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B.

FEBS Lett. 2001 Jun 1;498(1):98-103.

12.

ETP1/YHL010c is a novel gene needed for the adaptation of Saccharomyces cerevisiae to ethanol.

Snowdon C, Schierholtz R, Poliszczuk P, Hughes S, van der Merwe G.

FEMS Yeast Res. 2009 May;9(3):372-80. doi: 10.1111/j.1567-1364.2009.00497.x.

14.

Analysis of the stress resistance of commercial wine yeast strains.

Carrasco P, Querol A, del Olmo M.

Arch Microbiol. 2001 Jun;175(6):450-7.

PMID:
11491086
15.

Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.

Pérez-Torrado R, Bruno-Bárcena JM, Matallana E.

Appl Environ Microbiol. 2005 Nov;71(11):6831-7.

16.

The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae.

Stanley D, Bandara A, Fraser S, Chambers PJ, Stanley GA.

J Appl Microbiol. 2010 Jul;109(1):13-24. doi: 10.1111/j.1365-2672.2009.04657.x. Epub 2010 Jan 11. Review.

17.
19.

Trehalose promotes the survival of Saccharomyces cerevisiae during lethal ethanol stress, but does not influence growth under sublethal ethanol stress.

Bandara A, Fraser S, Chambers PJ, Stanley GA.

FEMS Yeast Res. 2009 Dec;9(8):1208-16. doi: 10.1111/j.1567-1364.2009.00569.x.

20.

Post-transcriptional regulation of gene expression in yeast under ethanol stress.

Izawa S, Inoue Y.

Biotechnol Appl Biochem. 2009 May 6;53(Pt 2):93-9. doi: 10.1042/BA20090036. Review.

PMID:
19397495

Supplemental Content

Support Center