Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 83

1.

Structure of frozen-hydrated triad junctions: a case study in motif searching inside tomograms.

Renken C, Hsieh CE, Marko M, Rath B, Leith A, Wagenknecht T, Frank J, Mannella CA.

J Struct Biol. 2009 Feb;165(2):53-63. doi: 10.1016/j.jsb.2008.09.011. Epub 2008 Nov 5.

2.

Calsequestrin: more than 'only' a luminal Ca2+ buffer inside the sarcoplasmic reticulum.

Szegedi C, Sárközi S, Herzog A, Jóna I, Varsányi M.

Biochem J. 1999 Jan 1;337 ( Pt 1):19-22.

3.

Electron tomography of frozen-hydrated isolated triad junctions.

Wagenknecht T, Hsieh CE, Rath BK, Fleischer S, Marko M.

Biophys J. 2002 Nov;83(5):2491-501.

4.

Calsequestrin and the calcium release channel of skeletal and cardiac muscle.

Beard NA, Laver DR, Dulhunty AF.

Prog Biophys Mol Biol. 2004 May;85(1):33-69. Review.

PMID:
15050380
5.
6.

Abnormal junctions between surface membrane and sarcoplasmic reticulum in skeletal muscle with a mutation targeted to the ryanodine receptor.

Takekura H, Nishi M, Noda T, Takeshima H, Franzini-Armstrong C.

Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3381-5.

7.
8.

Activation and propagation of Ca2+ release from inside the sarcoplasmic reticulum network of mammalian skeletal muscle.

Cully TR, Edwards JN, Launikonis BS.

J Physiol. 2014 Sep 1;592(17):3727-46. doi: 10.1113/jphysiol.2014.274274. Epub 2014 Jun 27.

9.

Control of muscle ryanodine receptor calcium release channels by proteins in the sarcoplasmic reticulum lumen.

Beard NA, Wei L, Dulhunty AF.

Clin Exp Pharmacol Physiol. 2009 Mar;36(3):340-5. doi: 10.1111/j.1440-1681.2008.05094.x. Review.

PMID:
19278523
10.

A calcium-induced calcium release mechanism mediated by calsequestrin.

Lee YS, Keener JP.

J Theor Biol. 2008 Aug 21;253(4):668-79. doi: 10.1016/j.jtbi.2008.04.027. Epub 2008 May 2.

PMID:
18538346
11.

Measurement of RyR permeability reveals a role of calsequestrin in termination of SR Ca(2+) release in skeletal muscle.

Sztretye M, Yi J, Figueroa L, Zhou J, Royer L, Allen P, Brum G, Ríos E.

J Gen Physiol. 2011 Aug;138(2):231-47. doi: 10.1085/jgp.201010592.

12.

Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites.

Laver DR.

Clin Exp Pharmacol Physiol. 2007 Sep;34(9):889-96. Review.

PMID:
17645636
13.

Mice null for calsequestrin 1 exhibit deficits in functional performance and sarcoplasmic reticulum calcium handling.

Olojo RO, Ziman AP, Hernández-Ochoa EO, Allen PD, Schneider MF, Ward CW.

PLoS One. 2011;6(12):e27036. doi: 10.1371/journal.pone.0027036. Epub 2011 Dec 2.

14.
15.

Calsequestrin mediates changes in spontaneous calcium release profiles.

Tania N, Keener JP.

J Theor Biol. 2010 Aug 7;265(3):359-76.

PMID:
20648970
16.

Axial tubules of rat ventricular myocytes form multiple junctions with the sarcoplasmic reticulum.

Asghari P, Schulson M, Scriven DR, Martens G, Moore ED.

Biophys J. 2009 Jun 3;96(11):4651-60. doi: 10.1016/j.bpj.2009.02.058.

17.

Lessons from calsequestrin-1 ablation in vivo: much more than a Ca(2+) buffer after all.

Protasi F, Paolini C, Canato M, Reggiani C, Quarta M.

J Muscle Res Cell Motil. 2011 Dec;32(4-5):257-70. doi: 10.1007/s10974-011-9277-2. Epub 2011 Dec 1.

PMID:
22130610
18.

Structural alterations in cardiac calcium release units resulting from overexpression of junctin.

Zhang L, Franzini-Armstrong C, Ramesh V, Jones LR.

J Mol Cell Cardiol. 2001 Feb;33(2):233-47.

PMID:
11162129
19.

Phosphorylation of skeletal muscle calsequestrin enhances its Ca2+ binding capacity and promotes its association with junctin.

Beard NA, Wei L, Cheung SN, Kimura T, Varsányi M, Dulhunty AF.

Cell Calcium. 2008 Oct;44(4):363-73.

PMID:
19230141
20.

Characterization of the sarcoplasmic reticulum proteins in the thermogenic muscles of fish.

Block BA, O'Brien J, Meissner G.

J Cell Biol. 1994 Dec;127(5):1275-87.

Supplemental Content

Support Center