Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Chapter 9. Development of coronary vessels.

Dong XR, Maguire CT, Wu SP, Majesky MW.

Methods Enzymol. 2008;445:209-28. doi: 10.1016/S0076-6879(08)03009-7.

PMID:
19022061
2.

Tbx18 regulates development of the epicardium and coronary vessels.

Wu SP, Dong XR, Regan JN, Su C, Majesky MW.

Dev Biol. 2013 Nov 15;383(2):307-20. doi: 10.1016/j.ydbio.2013.08.019.

3.

In vivo and in vitro analysis of the vasculogenic potential of avian proepicardial and epicardial cells.

Guadix JA, Carmona R, Muñoz-Chápuli R, Pérez-Pomares JM.

Dev Dyn. 2006 Apr;235(4):1014-26.

4.

FGFR-1 is required by epicardium-derived cells for myocardial invasion and correct coronary vascular lineage differentiation.

Pennisi DJ, Mikawa T.

Dev Biol. 2009 Apr 1;328(1):148-59. doi: 10.1016/j.ydbio.2009.01.023.

5.

A 3-D model of coronary vessel development.

Nesbitt TL, Patel PA, Yost MJ, Goodwin RL, Potts JD.

In Vitro Cell Dev Biol Anim. 2007 Jan;43(1):10-6.

PMID:
17570028
6.

Development of the coronary blood supply: changing concepts and current ideas.

Bernanke DH, Velkey JM.

Anat Rec. 2002 Aug 15;269(4):198-208. Review.

7.

The origin of the epicardium and the embryonic myocardial circulation in the mouse.

Virágh S, Challice CE.

Anat Rec. 1981 Sep;201(1):157-68.

PMID:
7305017
8.

Tbx5 is required for avian and Mammalian epicardial formation and coronary vasculogenesis.

Diman NY, Brooks G, Kruithof BP, Elemento O, Seidman JG, Seidman CE, Basson CT, Hatcher CJ.

Circ Res. 2014 Oct 24;115(10):834-44. doi: 10.1161/CIRCRESAHA.115.304379.

9.

Epicardial-myocardial signaling directing coronary vasculogenesis.

Olivey HE, Svensson EC.

Circ Res. 2010 Mar 19;106(5):818-32. doi: 10.1161/CIRCRESAHA.109.209197. Review.

10.

Embryonic development of the proepicardium and coronary vessels.

Ratajska A, Czarnowska E, Ciszek B.

Int J Dev Biol. 2008;52(2-3):229-36. doi: 10.1387/ijdb.072340ar. Review.

11.

Retinoic acid and VEGF delay smooth muscle relative to endothelial differentiation to coordinate inner and outer coronary vessel wall morphogenesis.

Azambuja AP, Portillo-Sánchez V, Rodrigues MV, Omae SV, Schechtman D, Strauss BE, Costanzi-Strauss E, Krieger JE, Perez-Pomares JM, Xavier-Neto J.

Circ Res. 2010 Jul 23;107(2):204-16. doi: 10.1161/CIRCRESAHA.109.214650.

12.

Coronary development is regulated by ATP-dependent SWI/SNF chromatin remodeling component BAF180.

Huang X, Gao X, Diaz-Trelles R, Ruiz-Lozano P, Wang Z.

Dev Biol. 2008 Jul 15;319(2):258-66. doi: 10.1016/j.ydbio.2008.04.020.

14.

Signaling during epicardium and coronary vessel development.

Pérez-Pomares JM, de la Pompa JL.

Circ Res. 2011 Dec 9;109(12):1429-42. doi: 10.1161/CIRCRESAHA.111.245589. Review.

15.

Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation.

Gittenberger-de Groot AC, Vrancken Peeters MP, Bergwerff M, Mentink MM, Poelmann RE.

Circ Res. 2000 Nov 24;87(11):969-71.

16.

Epicardial development in the rat: a new perspective.

Nesbitt T, Lemley A, Davis J, Yost MJ, Goodwin RL, Potts JD.

Microsc Microanal. 2006 Oct;12(5):390-8.

PMID:
16984665
17.

bves: A novel gene expressed during coronary blood vessel development.

Reese DE, Zavaljevski M, Streiff NL, Bader D.

Dev Biol. 1999 May 1;209(1):159-71.

18.
19.

Distribution of connective tissue proteins during development and neovascularization of the epicardium.

Bouchey D, Drake CJ, Wunsch AM, Little CD.

Cardiovasc Res. 1996 Feb;31 Spec No:E104-15.

20.

Embryonic development of coronary vasculature in rats: corrosion casting studies.

Ratajska A, Ciszek B, Sowińska A.

Anat Rec A Discov Mol Cell Evol Biol. 2003 Feb;270(2):109-16.

Items per page

Supplemental Content

Support Center